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Dispatching Problem

Control problem

1. n parallel FCFS servers
2. Job dispatching upon arrival
3. Poisson arrival process with rate λ

4. i.i.d. job sizes Xi ∼ X
5. Jobsize Xi and backlogs uj are known (upon arrival)
6. Minimize mean waiting time

n serversDispatcherArrivals

λ

uj

Xi

Fundamentally a Markov Decision Problem
. . . in n-dimensional continuous space
. . . analytically intractable (when both jobsize and backlogs are known)



Sample Realizations with Heuristics

LWL Least-Work-Left chooses the queue with
shortest backlog
(load balancing)

STO Straight-to-the-Origin tries to maintain
ratio u1 : u2 constant
(fixed ratio on backlogs)

MWL Most-Work-Left chooses the queue with
longest backlog
(load unbalancing, except when u2 < 3 here)

1) These policies ignore the size of the new job

Fluid approximation does well!



Routing Fluid to Parallel Servers

Fluid Control Problem
1. Fluid arrives at rate λ

2. Fluid consists of particles with size density
f (x) with E[X ] = 1

3. Dispatching is based on i) particle sizes and
ii) server backlogs uj

4. n parallel FCFS servers with service rates 1/n

i) Stability: ρ < 1 (ρ=λE[X ]=λ as E[X ]=1)
ii) Objective: Minimize mean waiting time

uj

new jobs split servers

f (x)

new jobs

Dispatching problem without stochastic fluctuations!



Fluid System Dynamics
Control action α(u) defines
1. Server-specific loads ρj (at state u)
2. Server-specific rates λj∑

j
ρj = ρ and

∑
j

λj = λ

Control α(u) thus defines drainage rates

u̇j(t) = d
dt uj(t) = 1

n − ρj(t)

and state-dependent cost rates

ċj(t) = λj(t) · uj(t)

Optimization problem
Determine control α(u) to
minimize total cost (=value function)
for a given initial state u

∑
j

(∫ T

0
ċj(t) dt

)
=: min

With any work-conserving policy (ρ < 1)
the system empties at time

T = u1 + . . . + un
1 − ρ



Paths and Control

▶ Control α(u) defines the
server-specific loads ρj

▶ The server-specific loads ρj define the
trajectory how backlogs are emptied

▶ Not all paths are feasible
▶ Some backlogs may also increase!

ρj define the path u̇j = 1
n − ρj

λj and uj define costs ċj = λj · uj
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Problem: Find the optimal path to the origin!
(but the ρj can be realized many ways, each yielding different cost rate!)



Structural Results: Short to Short (for short)

Theorem
Optimal policy splits the jobsizes to n intervals using
n − 1 thresholds, h1 ≤ h2 ≤ . . . ≤ hn−1, and routes
1) the shortest jobs to the shortest queue
2) next interval to the 2nd shortest queue, etc.
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Corollary
It is sufficient to find the optimal path, which gives the ρj , λj , hj and α(u).
That is, the policy α(u) can be defined in terms of ρj , λj or hj .



Control Parameters

Thresholds hj ⇒ control α(u)

f (x)
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Structural Results: Scale-free Property

Theorem (Optimal paths are scale-free)
p(s) optimal ⇒ β · p(s) is also optimal ∀ β > 0.

Corollary (Monotonicity with Two Servers)
The optimal path increases the imbalance as the fluid drains.
Imbalance can be measured by the angle, ω, the imbalance
ratio, u2/u1, or the relative imbalance, (u1 − u2)/(u1 + u2).

Corollary (Quadratic value function)
v(βu) = β2 · v(u) n servers

v(u) = |u|2 · w(ω) 2 servers
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Numerical Studies



Heuristics vs. Optimal Path

▶ Two servers with service rates (1/2, 1/2)
▶ Exp(1)-distributed jobs and offered load ρ = 0.7
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Imbalancing pays off!



Varying Load and Jobsizes with Two Servers
▶ Two servers service rates 1/2
▶ Exp(1)-distributed jobs
▶ Initial state: u = (4, 4)

▶ Two servers service rates 1/2
▶ Offered load ρ = 0.7
▶ Different jobsize distributions
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Optimal policy depends on size-distribution

Theorem
More variable job sizes lead to lower total costs.



Paths with Three Servers – Varying Load

▶ Three servers with service rates 1/3
▶ U(0,2)-distributed jobsizes
▶ Initial state: u = (1, 1, 1)
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Optimal policy aggressively empties one or two servers at the expense of the third!



Conclusions

1. Fluid routing problem is an interesting optimization problem itself!
2. Essentially a problem in variational calculus
3. Many interesting structural results

- More variability in job sizes decreases costs
- As ρ → 1, MWL is optimal

And the mean waiting time agrees with the heavy traffic optimality results1

4. Gives insight to the job dispatching problem

Thank you! Any questions?
(esa@hi.is)

1R. Xie, I. Grosof, and Z. Scully, “Heavy-traffic optimal size-and state-aware dispatching,”
Proc. of the ACM on Measurement and Analysis of Computing Systems, 2024.



Scaling n
Comparing E[W ] with n servers to E[W ] with a comparable single server system gives

R(n) := E[Wn]
E[W1] →

[
1 − Φ

(n − 1
n

)]
n as ρ → 1. [Φ(s) := F (g−1(s))]

For large n, we have similarly

R(n) ≈ 1
g−1(s) . (1)

▶ With X ∼ U(0, 2), we have R(n) → 1/2;
E[W ] can decrease atmost to half!

▶ With Pareto distribution, R(n) → 0.
The rate depends on the shape parameter α.
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Eq. (1) quantifies how performance scales under heavy load with different
jobsize distributions!
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