

Dispatching to Fluid Queues

Esa Hyytiä^{1,2} Runhan Xie³ Rhonda Righter³

University of Iceland¹

Aalto University²

University of California Berkeley³

**UNIVERSITY
OF ICELAND**

A!
Aalto University

UC Berkeley

INFORMS APS – Georgia Tech, Atlanta, United States

June 30, 2025

Outline:

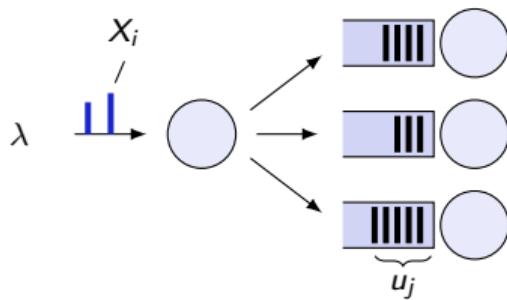
1. Dispatching Problem
2. Fluid Dispatching Problem
3. Theoretical Results
4. Numerical Examples

Dispatching Problem

Control problem

1. n parallel FCFS servers
2. Job dispatching upon arrival
3. Poisson arrival process with rate λ
4. i.i.d. job sizes $X_i \sim X$
5. Jobsizes X_i and backlogs u_j are known (upon arrival)
6. Minimize mean waiting time

Arrivals Dispatcher n servers

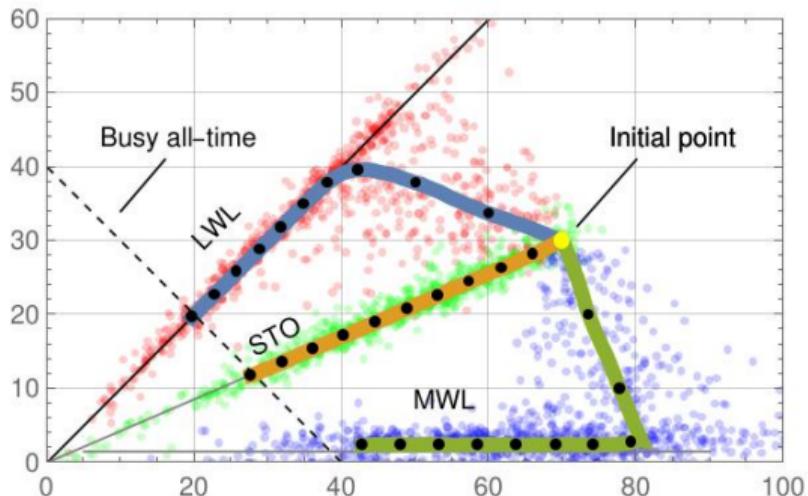


Fundamentally a Markov Decision Problem

... in n -dimensional continuous space

... analytically intractable (when **both** jobsize and backlogs are known)

Sample Realizations with Heuristics



LWL Least-Work-Left chooses the queue with shortest backlog

(load balancing)

STO Straight-to-the-Origin tries to maintain ratio $u_1 : u_2$ constant
(fixed ratio on backlogs)

MWL Most-Work-Left chooses the queue with longest backlog
(load unbalancing, except when $u_2 < 3$ here)

- 1) These policies ignore the size of the new job

Fluid approximation does well!

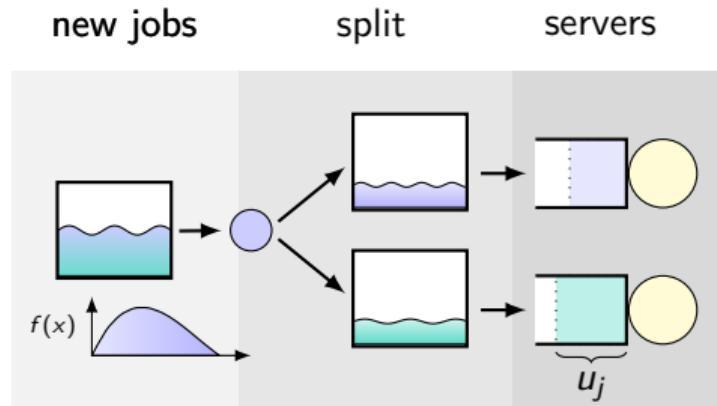
Routing Fluid to Parallel Servers

Fluid Control Problem

1. Fluid arrives at rate λ
2. Fluid consists of particles with size density $f(x)$ with $\mathbb{E}[X] = 1$
3. Dispatching is based on i) particle sizes and ii) server backlogs u_j
4. n parallel FCFS servers with service rates $1/n$

- i) **Stability:** $\rho < 1$ ($\rho = \lambda \mathbb{E}[X] = \lambda$ as $\mathbb{E}[X] = 1$)
- ii) **Objective:** Minimize mean waiting time

Dispatching problem without stochastic fluctuations!



Fluid System Dynamics

Control action $\alpha(\mathbf{u})$ defines

1. Server-specific loads ρ_j (at state \mathbf{u})
2. Server-specific rates λ_j

$$\sum_j \rho_j = \rho \text{ and } \sum_j \lambda_j = \lambda$$

Control $\alpha(\mathbf{u})$ thus defines *drainage rates*

$$\dot{u}_j(t) = \frac{d}{dt} u_j(t) = \frac{1}{n} - \rho_j(t)$$

Optimization problem

Determine control $\alpha(\mathbf{u})$ to minimize total cost (=value function) for a given initial state \mathbf{u}

$$\sum_j \left(\int_0^T \dot{c}_j(t) dt \right) =: \min$$

With *any* work-conserving policy ($\rho < 1$) the system empties at time

$$T = \frac{u_1 + \dots + u_n}{1 - \rho}$$

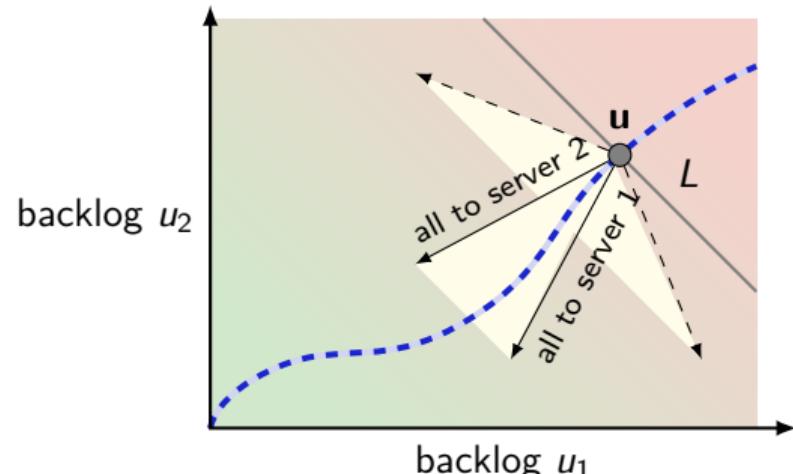
and state-dependent *cost rates*

$$\dot{c}_j(t) = \lambda_j(t) \cdot u_j(t)$$

Paths and Control

- ▶ Control $\alpha(\mathbf{u})$ defines the server-specific loads ρ_j
- ▶ The server-specific loads ρ_j define the trajectory how backlogs are emptied
- ▶ Not all paths are feasible
- ▶ Some backlogs may also increase!

$$\begin{aligned}\rho_j \text{ define the path} \quad & \dot{u}_j = \frac{1}{n} - \rho_j \\ \lambda_j \text{ and } u_j \text{ define costs} \quad & \dot{c}_j = \lambda_j \cdot u_j\end{aligned}$$



Problem: Find the optimal path to the origin!

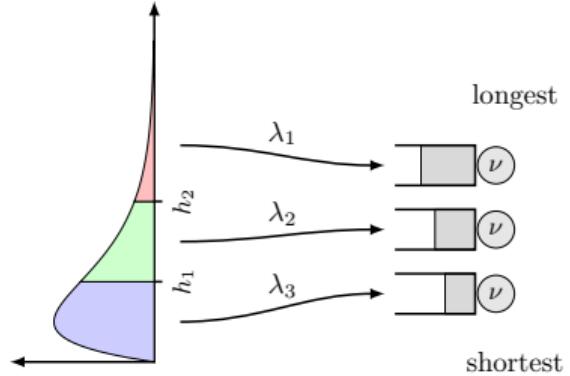
(but the ρ_j can be realized many ways, each yielding different cost rate!)

Structural Results: Short to Short (for short)

Theorem

Optimal policy splits the jobsizes to n intervals using $n - 1$ thresholds, $h_1 \leq h_2 \leq \dots \leq h_{n-1}$, and routes

- 1) the shortest jobs to the shortest queue*
- 2) next interval to the 2nd shortest queue, etc.*

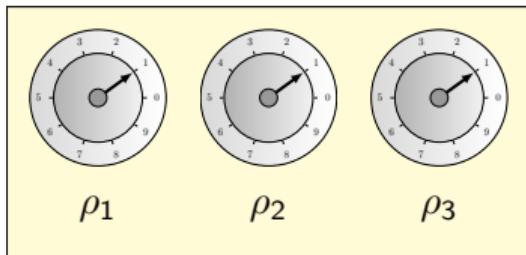


Corollary

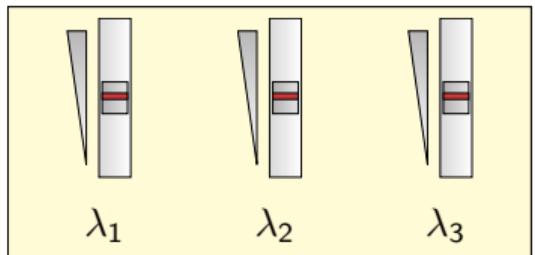
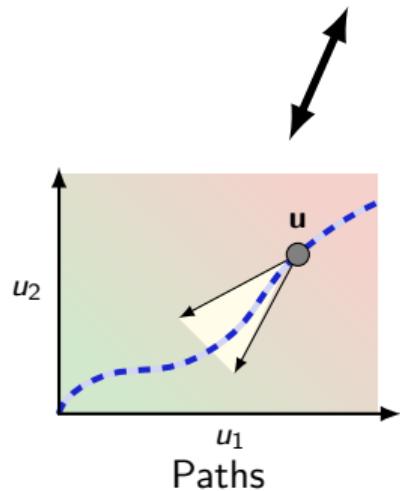
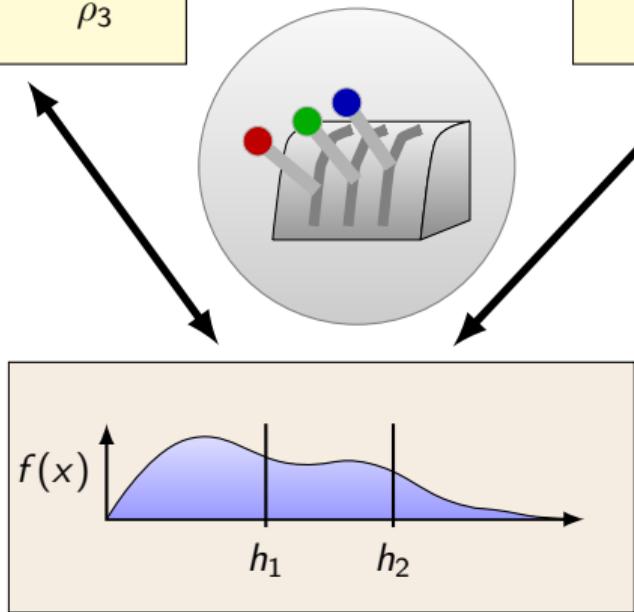
It is sufficient to find the optimal path, which gives the ρ_j , λ_j , h_j and $\alpha(\mathbf{u})$. That is, the policy $\alpha(\mathbf{u})$ can be defined in terms of ρ_j , λ_j or h_j .

Control Parameters

Queue-specific loads



Arrival rates



Thresholds $h_j \Rightarrow$ control $\alpha(\mathbf{u})$

Structural Results: Scale-free Property

Theorem (Optimal paths are scale-free)

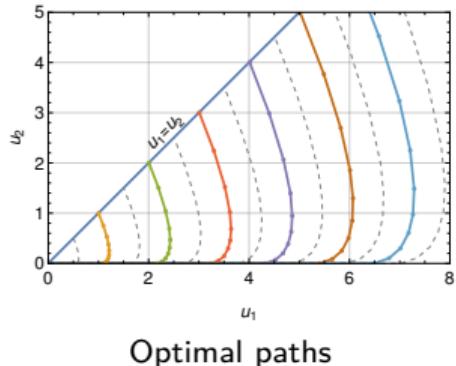
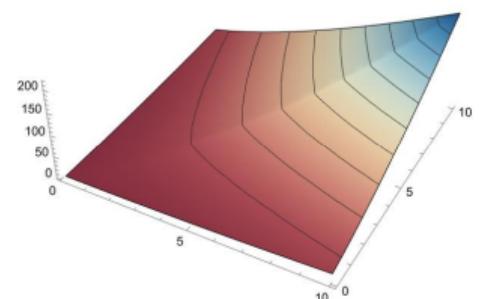
$\mathbf{p}(s)$ optimal $\Rightarrow \beta \cdot \mathbf{p}(s)$ is also optimal $\forall \beta > 0$.

Corollary (Monotonicity with Two Servers)

The optimal path **increases the imbalance** as the fluid drains. Imbalance can be measured by the angle, ω , the imbalance ratio, u_2/u_1 , or the relative imbalance, $(u_1 - u_2)/(u_1 + u_2)$.

Corollary (Quadratic value function)

$$v(\beta \mathbf{u}) = \beta^2 \cdot v(\mathbf{u}) \quad n \text{ servers}$$
$$v(\mathbf{u}) = |\mathbf{u}|^2 \cdot w(\omega) \quad 2 \text{ servers}$$

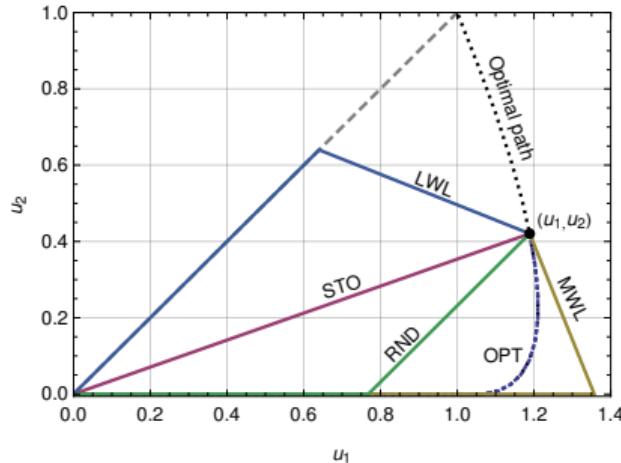
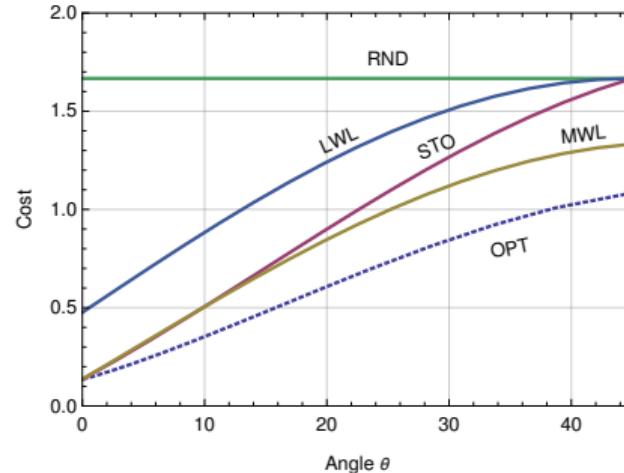


Value function

Numerical Studies

Heuristics vs. Optimal Path

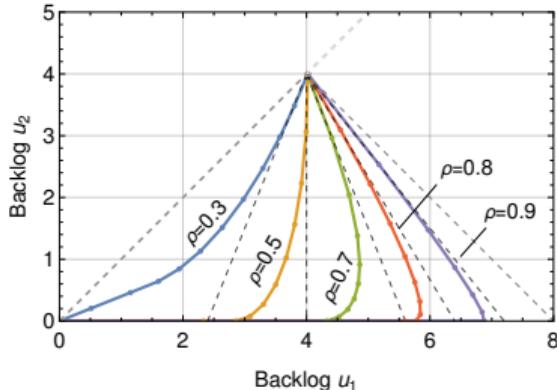
- ▶ Two servers with service rates $(1/2, 1/2)$
- ▶ $\text{Exp}(1)$ -distributed jobs and offered load $\rho = 0.7$



Imbalancing pays off!

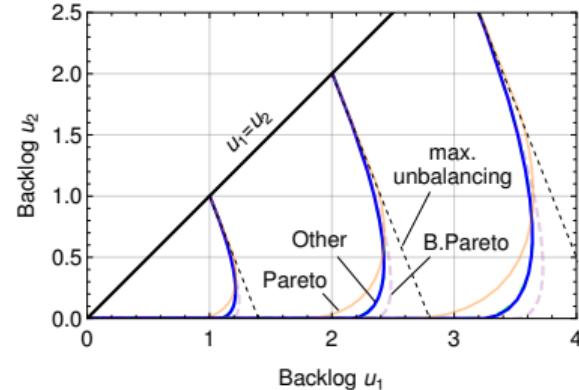
Varying Load and Jobsizes with Two Servers

- ▶ Two servers service rates $1/2$
- ▶ $\text{Exp}(1)$ -distributed jobs
- ▶ Initial state: $\mathbf{u} = (4, 4)$



Optimal policy unbalances backlogs

- ▶ Two servers service rates $1/2$
- ▶ Offered load $\rho = 0.7$
- ▶ Different jobs size distributions



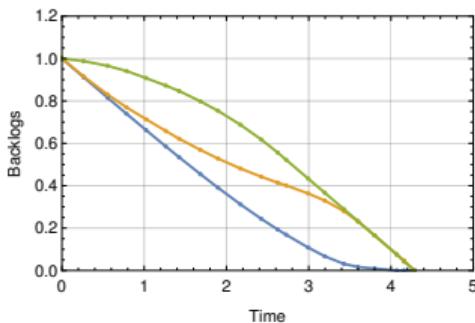
Optimal policy depends on size-distribution

Theorem

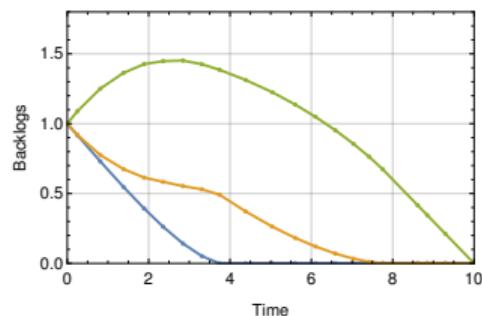
More variable job sizes lead to lower total costs.

Paths with Three Servers – Varying Load

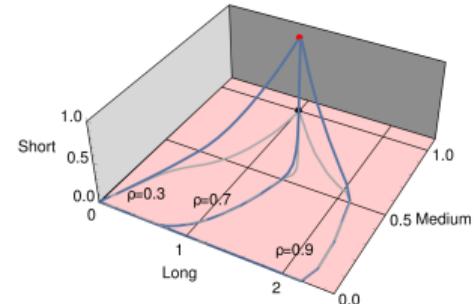
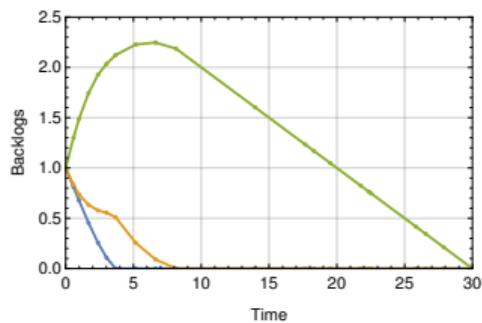
- ▶ Three servers with service rates $1/3$
- ▶ $U(0,2)$ -distributed jobsizes
- ▶ Initial state: $\mathbf{u} = (1, 1, 1)$



$$\rho = 0.3$$



$$\rho = 0.7$$



$$\rho = 0.9$$

Optimal policy aggressively empties one or two servers at the expense of the third!

Conclusions

1. Fluid routing problem is an **interesting optimization problem itself!**
2. Essentially a problem in **variational calculus**
3. Many interesting **structural results**
 - More variability in job sizes *decreases* costs
 - As $\rho \rightarrow 1$, MWL is optimal
And the mean waiting time agrees with the heavy traffic optimality results¹
4. Gives **insight to the job dispatching problem**

Thank you! Any questions?

(esa@hi.is)

¹R. Xie, I. Grosuf, and Z. Scully, "Heavy-traffic optimal size-and state-aware dispatching," Proc. of the ACM on Measurement and Analysis of Computing Systems, 2024.

Scaling n

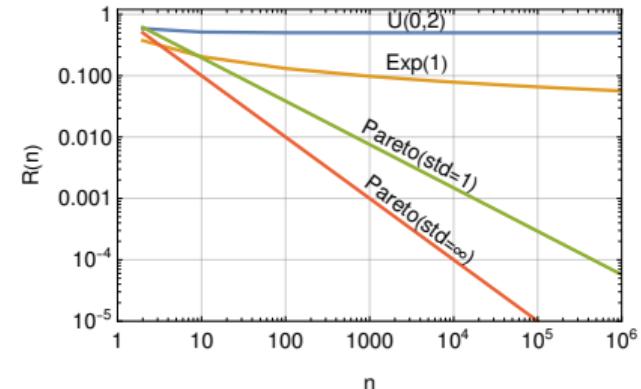
Comparing $\mathbb{E}[W]$ with n servers to $\mathbb{E}[W]$ with a comparable single server system gives

$$R(n) := \frac{\mathbb{E}[W_n]}{\mathbb{E}[W_1]} \rightarrow \left[1 - \Phi \left(\frac{n-1}{n} \right) \right] n \quad \text{as } \rho \rightarrow 1. \quad [\Phi(s) := F(g^{-1}(s))]$$

For large n , we have similarly

$$R(n) \approx \frac{1}{g^{-1}(s)}. \quad (1)$$

- ▶ With $X \sim U(0, 2)$, we have $R(n) \rightarrow 1/2$;
 $\mathbb{E}[W]$ can decrease atmost to half!
- ▶ With Pareto distribution, $R(n) \rightarrow 0$.
The rate depends on the shape parameter α .



Eq. (1) quantifies how performance scales under heavy load with different jobsize distributions!

References

- [1] R. Xie, I. Grosof, and Z. Scully, "*Heavy-traffic optimal size-and state-aware dispatching*," Proc. of the ACM on Measurement and Analysis of Computing Systems, 2024.
- [2] E. Hyytiä and R. Righter, "*Towards the Optimal Dynamic Size-aware Dispatching*," Performance Evaluation, no. 102396, 2024.
- [3] E. Hyytiä, P. Jacko and R. Righter, "*Routing with too much information?*," Queueing Systems, vol. 100, pp. 441-443, 2022.