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Dispatching Problem

Control problem

Arrivals Dispatcher n servers
1. n parallel FCFS servers
2. Job dispatching upon arrival )/Q EQ
3. Poisson arrival process with rate A A ., Q — EQ
4. i.i.d. job sizes X; ~ X miii
5. Jobsize X; and backlogs uj are known (upon arrival) o
6. Minimize mean waiting time

Fundamentally a Markov Decision Problem
...in n-dimensional continuous space
... analytically intractable  (when both jobsize and backlogs are known)




Sample Realizations with Heuristics

LWL Least-Work-Left chooses the queue with
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1) These policies ignore the size of the new job

Fluid approximation does well!




Routing Fluid to Parallel Servers

Fluid Control Problem
] _ new jobs split
1. Fluid arrives at rate A

2. Fluid consists of particles with size density

Servers

-

f(x) with E[X] =1 /
N\

3. Dispatching is based on i) particle sizes and -0

ii) server backlogs u; " )I N

4. n parallel FCFS servers with service rates 1/n

i) Stability: p <1 (p=AE[X]=) as E[X]=1)

i) Objective: Minimize mean waiting time

Dispatching problem without stochastic fluctuations!
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Fluid System Dynamics

Control action «(u) defines
1. Server-specific loads p; ~ (at state u)

2. Server-specific rates );
ij:pand Z)\j:)\
J J

Control «(u) thus defines drainage rates

(0= St ==~ py(t)

and state-dependent cost rates

¢(t) = Aj(t) - ui(t)

Optimization problem

Determine control «(u) to
minimize total cost (=value function)
for a given initial state u

2. (/OT ¢(t) dt) =: min

J

With any work-conserving policy (p < 1)
the system empties at time
up+ ...+ up

T =
1—p




Paths and Control

» Control a(u) defines the

server-specific loads p;
» The server-specific loads p; define the

trajectory how backlogs are emptied backlog u»
» Not all paths are feasible

» Some backlogs may also increase!

pj define the path uj = % - pj >

Aj and u; define costs ¢ = \j - u; backlog

Problem: Find the optimal path to the origin!

(but the pj can be realized many ways, each yielding different cost rate!)




Structural Results: Short to Short (for short)

Theorem longest

Optimal policy splits the jobsizes to n intervals using *_. T J®

n—1 thresholds., h1 < hy <...< h,_1, and routes \N——}_’:D@
1) the shortest jobs to the shortest queue Lo —T®
2) next interval to the 2nd shortest queue, etc. ———

shortest

Corollary

It is sufficient to find the optimal path, which gives the p;, \;, h; and a(u).
That is, the policy a(u) can be defined in terms of p;, A; or h;.




Control Parameters

u2

Queue-specific loads

Arrival rates
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Thresholds h; = control a(u)
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Structural Results: Scale-free Property

Theorem (Optimal paths are scale-free) )

p(s) optimal = (- p(s) is also optimal ¥ 3 > 0. :

Corollary (Monotonicity with Two Servers)

The optimal path increases the imbalance as the fluid drains.
Imbalance can be measured by the angle, w, the imbalance
ratio, up/u1, or the relative imbalance, (uv1 — tp)/(u1 + u2).

Corollary (Quadratic value function)

v(Bu)= B?-v(u)  n servers
v(u) = |u]? - w(w) 2 servers




Numerical Studies
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Heuristics vs. Optimal Path

» Two servers with service rates (1/2,1/2)
» Exp(1)-distributed jobs and offered load p = 0.7
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Imbalancing pays off!




Varying Load and Jobsizes with Two Servers

» Two servers service rates 1/2 > Two servers service rates 1/2
» Exp(1)-distributed jobs » Offered load p = 0.7
> Initial state: u = (4,4) » Different jobsize distributions
5 25
4 2.0
?: 3 ;N 1.5 o‘fl& max.
% % \ unbalan'cing \
g2 s 1.0
; 05 Other | */ B.Pareto
’ Pareto\ 4
0 00 1 2 \ 3 4
Backlog uy Backlog uy
Optimal policy unbalances backlogs Optimal policy depends on size-distribution

More variable job sizes lead to lower total costs.




Paths with Three Servers — Varying Load

» Three servers with service rates 1/3
» U(0,2)-distributed jobsizes
» Initial state: u=(1,1,1)
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Optimal policy aggressively empties one or two servers at the expense of the third!
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Conclusions

1. Fluid routing problem is an interesting optimization problem itself!
2. Essentially a problem in variational calculus

3. Many interesting structural results
- More variability in job sizes decreases costs

- As p — 1, MWL is optimal
And the mean waiting time agrees with the heavy traffic optimality results!

4. Gives insight to the job dispatching problem

Thank you! Any questions?

(esa@hi.is)

IR. Xie, I. Grosof, and Z. Scully, “Heavy-traffic optimal size-and state-aware dispatching,”
Proc. of the ACM on Measurement and Analysis of Computing Systems, 2024.



Scaling n

Comparing E[W] with n servers to E[W] with a comparable single server system gives

R(n) = E%} 5 {1 _ o <” = 1)] noaspo1 [(s) = Flg(s))]

For large n, we have similarly

1 TE U(0.2)
R(n) =~ 1 0.100 Expdl)
()~ =175 1)
= 0.010
= 0.001
> With X ~ U(0,2), we have R(n) — 1/2; 1o
E[W] can decrease atmost to half! o

» With Pareto distribution, R(n) — 0. Tt e e et e e
The rate depends on the shape parameter a.

Eq. (1) quantifies how performance scales under heavy load with different

jobsize distributions! 5
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