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ABSTRACT

We develop a fluid-flow model for routing problems, where
fluid consists of different size particles and the task is to
route the incoming fluid to n parallel servers using the size
information in order to minimize the mean latency.

The problem corresponds to the dispatching problem of
(discrete) jobs arriving according to a stochastic process. In
the fluid model the problem reduces to finding an optimal
path to empty the system in n-dimensional space. We use
the calculus of variation to characterize the structure of op-
timal policies. Numerical examples shed further light on
the fluid routing problem and the optimal control of large
distributed service systems.

1. INTRODUCTION

The problem of routing jobs to parallel FCFS (first-come
first-served) servers based on job sizes and server workloads
in order to minimize, e.g., mean latency is important for
many applications [1, 2, 3]. Though SRPT scheduling for
each server is optimal in this context, FCF'S is the dominant
scheduling policy in practice; see, e.g., [4], [5].

Even under Markov assumptions with homogeneous FCFS
servers, there is no simple characterization of the optimal
dispatching policy when both the size of an arriving job and
the workloads at all servers are observed [6]. We therefore
consider stable dispatching systems at the fluid limit, so in-
stead of individual jobs arriving according to a point process
in time, we model the incoming jobs as a continuum, while
keeping the notion of job sizes as a control parameter of the
fluid flow process.

The value function, or total latency, of the fluid system
approximates the value function of the underlying stochastic
system, but is more computationally tractable for determin-
ing the optimal policy and evaluating heuristics.

The main contributions of this paper are as follows:

1. We formulate the fluid control problem that captures
the dynamics of the original dispatching system when
the number of jobs in the system is large. To our
knowledge, we are the first to study size-aware flow
control for fluid models of queueing systems.

2. We show that shorter jobs should be routed to shorter
queues, which reduces the problem to an optimal path
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problem, and that the optimal path is invariant un-
der appropriate scaling, which reduces the number of
dimensions required to determine the path. We also
observe that unbalancing the workloads is beneficial,
especially under heavy load.

3. For some paths, and for the optimal path in heavy traf-
fic, the fluid value function matches the value function
for the original stochastic model.

4. We show, for two servers, that latency decreases as job
sizes become more variable in convex ordering.

5. We develop new heuristics for the original model based
on the optimal fluid policy when workloads are large,
but are adjusted to avoid idling for small workloads.

The fluid control problem reduces to the problem of de-
termining an optimal path to empty the system. We give
integral expressions for costs of arbitrary paths. Fixed con-
trol actions correspond to straight line segments, for which
closed-form expressions are available.

2. RELATED WORK

The dispatching problem has been extensively studied in
the queueing theory literature, and many policies have been
proposed and shown to be optimal under different assump-
tions on the available information (server states and job
sizes). If the system is homogeneous and state-aware only,
then Join-the-Shortest-Queue (JSQ) [7, 8] or Least-Work-
Left (LWL) [9, 10, 11, 12] have been shown to be optimal.
If the system is size-aware only, then Size-Interval-Task-
Assignment (SITA) [13] is shown to be optimal [14]. With
the routing history as the only state information, Round-
Robin (RR) is optimal, and combining RR and SITA can
out-perform RR or SITA alone [15, 16, 17].

The problem is much harder when the dispatching policy
is both size- and state-aware. Sequential dispatching heuris-
tics, that use both state and job-size information, and that
route short jobs to short queues, were introduced in [18],
and a particular one, called DICE, was shown numerically to
have excellent performance. Another dispatching heuristic,
CARD, was proposed in [19] and proven to be delay optimal
in heavy traffic, and was shown to perform well in simula-
tions. Our work provides theoretical support for heuristics
like CARD and DICE that unbalance the loads and send
shorter jobs to shorter queues.

Fluid models have been applied to study staffing problems
e.g. [20, 21, 22], scheduling problems e.g. [21, 23, 24, 25],
and dispatching problems e.g. [26, 27, 28, 29, 30]. These



models and their controls are often state aware, i.e., they
use remaining fluid in the system for decision making, but
are not job-size aware. We take a first step in studying size-
aware fluid dispatching problems.

3. FLUID DISPATCHING MODEL

Each of n FCFS servers has service rate 1/n, and work
comes in as a fluid flow at rate A < 1 comprising different size
particles with known density f(z), CDF F(z), and CCDF
F(z) = 1 — F(z), and with mean E[X] = 1, so that p =
AE[X] = A < 1. The incoming flow is to be split among
servers as a function of job sizes (or size of particles).

The state information, assumed known, is denoted by
u = (u1,...,un), where u; defines the backlog, or remaining
workload, in queue i. Thus, with no arrivals, queue i would
empty at time u;n. A control policy (job dispatcher) 7 splits
the incoming flow of jobs A into n sub-flows, based on job
sizes and the current backlog. That is, the policy chooses
arbitrary subsets of job sizes from non-negative reals, A;(u),
and routes jobs of size z € A;(u) to server .. We will show
that for an optimal policy, each subset comprises a single
non-overlapping interval, and moreover, shorter jobs Should
be routed to servers with smaller backlog.

The instantaneous rate of jobs, \;(u), and the work flow,
pi(u), routed to server i is then

zf(x)dx
i(w)

nw = [ Ty o = /

where > A;(u) = A = p = > pi(u). For ease of notation,
we often omit “(u)” and write A\; and p;, but we remind the
reader that these rates are constantly changing according to
the control policy.

Given our objective of minimizing latency, each arriving
job assigned to server i incurs cost u;n, so server ¢ incurs
waiting time cost at rate A;u;n, and the total cost rate is

c(u) Z:nz)\iui- (1)

For all meaningful policies u = 0 is an absorbing state where
no further costs are incurred, but there may be others. Let
no denote the number of empty servers, no := ||{i : u; =
0}| = >, L(u; = 0). Whenever ng - (1/n) > p, the empty
servers can process all incoming jobs without increasing their
backlogs, incurring no further costs, so we call any state with
no > np an absorbing state. We can assume, without loss
of generality, that the system stops (is absorbed) in such a
state. The question is how to move from the current state
u to an absorbing state at minimal cost. It is easy to show
that before absorption, incoming fluid should be routed to
servers with zero fluid at rate p; = 1/n, and all servers
should work at rate 1/n.
When fewer than n* servers are empty, we have
. 1
Ui = pi — — =1 —Vi,
n

where v; is queue ¢’s instantaneous drainage rate, with p; =
1/n if u; = 0. The cost (value function) of policy = =
(A1(a), ..., An(u)), with 7 (u) denoting the time to absorp-
tion, is

S Tr ()
vn (1) 1= /O c(un(t)) dt = /0 o(un () divu.

Remark 1 (Random Split) With load-balancing random
split (RND), the total cost incurred is

o5 U TopW ] 2
Ci:/lp ci(t)dt:n/lp Poat = LM
0 0 n 2(1-p)

vrnp(u) = Z(Ji = ﬁ (uf +...+ud),
=1

which, for p < 1 is finite for any job size distribution, re-
gardless of E[X?]. Moreover, this matches the value func-
tion of the stochastic system; for each M/G/1-FCFS queue,

v(u) = pu®/(2(1 = p)) [31, 32].

4. ANALYSIS WITH n SERVERS

We first show that the optimal policy is a dynamic SITA-
type policy, which, for a given u, splits job sizes into n non-
overlapping intervals, sending shorter jobs to servers with
less work. That is, with w3 > u2 > ... > u,, the optimal
policy is determined by size thresholds 0 = ho(u) < --- <
hn(u) = 00, so that Ant1—i(u) = [hi—1(0), hs(u)).

Proposition 1 The optimal policy assigns the shortest jobs
to the server with the smallest backlog, the next size interval
to the server with the second smallest backlog, and so on.

PROOF. We prove this by contradiction. Suppose u; > u;
and the optimal policy routes jobs of size (z,z+ ) to server
i and jobs of size (y,y +d’) to server j, where x +d < y. We
choose § and ¢’ so that

E[X Z(z <X <z+6)] =E[X Iy < X <y+0)),

i.e., the loads contributed by the two streams of jobs are
equal. Let Ay = AP(z < X <x+6§) and \y, = AP(y < X <
y—+6),s0mn := A — Ay > 0. The cost rate due to these
subflows of jobs is

Cij = n()\zuz +4 )\yu]').

Interchanging the corresponding job flows reduces the cost
rate:

cji = n(Azti + Ayuy) = n(Ayui + Aev; +n(ui — uj)) < cij,
which contradicts the optimality of the proposed policy. []

Corollary 1 (Structure of optimal policies) The opti-
mal dispatching policy can be characterized by n—1 appropri-
ately chosen state-dependent thresholds h;(u). Therefore,
the optimal policy from any initial point u is determined by
a path from that point to an absorbing state.

4.1 The Value Function in Terms of Paths

Note that there is a one-to-one correspondence between
a policy 7 starting in some state u and a path r(s) from u
to (0,...,0), where s is the curve parameter. By time re-
versal, we can also consider paths from the origin to u. We
shall consider only paths r(s) = (ri(s),...,r»(s)) that are
admissible by an appropriately chosen control policy. Then
r(0) = (0,...,0), r(s1) = u, and r'(s) defines the direction
of the path at point s, which must coincide with the direc-
tion of the drainage rates v = (v1, ..., V), v(s) = A(s) r'(s),
where the scalar function A(s) adjusts the “speed” at curve
point s to the actual drift. Before the path reaches an ab-
sorbing state (while ng < n*), the total drift is v1 +...vn =



1 — p, giving A(s) = (1 — p)/(ri(s) + ... + r.(s)), where
r1(s)+...+7},(s) > 0 aslong as p < 1. Once the path reaches
an absorbing state, 7j(s) = 0 if u; = 0, and ri(s) = 1/n if
u; > 0. Then,

v(s) = 1=p

ri(s)+ ... +71h(s)

(r1(s), SACHE

Thus, the (Euclidean) length of the drainage vector ||v(s)]|
along the path r(s) is

1-p
ri(s)+ ...+ 7rh(s)

v (s)ll = [’ (s)I1-
Note that v;(s) < 0 if server ¢ is receiving more work than
it can process (at the given time).

Lemma 1 (Value function) The total accumulated cost
along a work-conserving path r(s) is
1 1
vr(u) = —

=5/ c(8)(ri(s) + ... +rn(s))ds, (2)

where ¢(s) is the cost rate (per unit time) that depends on
the respective control actions according to (1).

As1r'(s) defines \; and p;, the cost rate c(s) depends solely
onr(s) and r'(s), and therefore (2) can be evaluated (at least
numerically if not in closed form) for any given path r(s).

4.2 Scale-free paths

Let us consider a family of “scale-free” paths that are
obtained by scaling a reference path ro(s),
r(s) = aro(s),

where ro(s) is some fixed path to u =ro(s1) and a > 0 is a
free scaling parameter. Substituting r(s) into (2) reveals a
quadratic relationship between the two value functions:

Lemma 2 The value function of r(s) = aro(s) is
ve(au) = &’ vy, (1).

Lemma 2 gives the following two important structural
properties of the optimal policy.

Corollary 2 Scale-free paths are optimal.

PROOF. By contradiction, suppose r(s) and r(s) are op-
timal paths for two states u and @ = au such that v(u) #
a?v(ug), so #(s) # ar(s). Then either r(s) or #(s) cannot
be optimal. First, if v(au) > a?v(u), then #(s) = ar(s) has
lower cost than r(s). The other case is similar. []

Corollary 3 The value function for any scale-free path scales
quadratically in the Euclidean distance |u|,
ve(u) = |u*w(6),

where w(0) is the value function at unit distance in the di-
rection 0 in n-dimensional space.

Due to the scaling property, we need only determine w(6)
in an n — 1 dimensional surface to obtain the optimal paths
for every state in the n-dimensional space.

S. OPTIMAL PATHS WITH TWO SERVERS

For n = 2 servers, both with service rate 1/2, we assume
that w1 > wus, so that u; corresponds to the horizontal axis.
Now it is also convenient to consider an alternate state rep-
resentation, (z,y), where x = u; + ug is the total backlog
and y = u1 — u2 is the imbalance. From the scale-free prop-
erty (Corollary 2) the optimal path depends only on the
relative imbalance, either captured by 6, the angle for the
point (u1,us2), or the relative queue difference, § = y/x.
This means that if, for some point (xo,yo) with relative im-
balance o, the optimal g = 0, i.e., the relative imbalance
should not change, then this will be true until the system
empties. We call such a path a straight to the origin (STO)
path. Because our paths are continuous, the path will visit
a point with a given ¢ either exactly once, or will maintain
g on an STO path. Indeed, we have the following corollary.

Corollary 4 (Monotonicity of optimal paths) For two
servers, the optimal fluid path is monotonic in §. That is,
from any initial point (z,y), the optimal path will always
increase or decrease the relative imbalance until the system
empties or until some Yo, after which it will follow an STO
path.

A consequence is that if the optimal policy empties queue
2 before queue 1, queue 2 will remain empty, even if p > 1/2.
Similarly, if the optimal path moves to perfectly balanced
queues, they will remain balanced.

For each point (x,y) any path is characterized by y' =
dy/dz, which in turn, for an optimal path, is controlled by
a single job-size threshold h = h(z,y) = h(ui,u2): jobs
shorter than h are assigned to queue 2 and the rest to queue
1. Let g(h) denote the load due to particles (jobs) smaller
than h, and recalling that A = p, we have

h
o) i=p [ 2f(2)dz = pP(X < B} BIXIX <1
0
Then, while u2 > 0 (y < ), u2 changes at rate g(h) — 1/2,

u1 changes at rate p — g(h) — 1/2, « changes at rate p — 1,
and

r_ (p=g(h) =1/2) = (g9(h) = 1/2) _ 2g(h) —p
Yy = = )
p—1 1-p
so g(h) = (p+ (1 — p)y')/2. Because 0 < g(h) < p, we have,
for y < z, that |y'| = |y'(x)| < p/(1 — p). That is, as the
load increases there is more room to maneuver in terms of
changing the path direction, including having the ability to
increase (temporarily) the load at one server if p > 1/2.
To capture total costs in terms of the control 3/, let ®(y’)
denote the fraction of jobs forwarded to queue 2,

o) [yt (22U

The cost rate is then

2p(uz (y') +u1 (1 — @(y))) = plz + (1 —29(y))y),

and the total cost for an arbitrary path 3y’ = y'(z) (and
y(z)) from initial state (z1,y1) is

o) = 12 [tz [T et yan



Because z? is independent of the path, an optimal policy
minimizes

7= /Ozl (1 — 20(y)y) da.

As observed in Corollary 4, the optimal § will be mono-
tone until some o = yo/xo, after which it will be constant
until (z,y) = (0,0). For such an STO path, y' = o and

Tsto (0, y0) = 2od0(1 — 28 (3o)).

When § = 1 (us = 0), ®(g) = ®(1) = F(g~(1/2)), and
Tsto (o, o) = 23(1 — 2®(1)). If uz = 0 and p < 1/2, then
q)(l) =1 and TSTo(.TQ,.To) =0.

Because F and g are nondecreasing, so is @, and ®(g) >
®(0) > 1/2. Taking the derivative we have the following.

Proposition 2 The cost of an STO path, from any point
(zo,yo) directly to the origin, is decreasing in Yo = Yo/To,
for any job-size distribution.

We conjecture that the optimal §’ > 0 (the relative im-
balance should increase for the optimal path). This is sup-
ported numerically as well as by the proposition above.

Let us now consider the optimal policy when p — 1. De-
fine the MWL (most work left) policy as the policy that
routes all jobs (fluid) to the long queue until the short queue
is empty; then short jobs are routed to the short queue such
that the rate of fluid to the short queue is max{p,1/2}. It
is not hard to derive the following, where ®(z) = 1 — ®(z).

Proposition 3 The MWL value function, varwr(u), is

p®(1)
1-p

2p[2uruz + (2p — 1)uj + (w1 + uz(2p — 1))°]

and MWL 1is asymptotically optimal, with
(1 — p)omwr(u) = 2p®(1)(u1 + u2)® = 2pd(1)z>.

The first two terms in the MWL value function correspond
to the cost to empty the short queue, and the last term (the
dominating term in heavy traffic) is the cost for the STO
path that then empties the long queue once the short queue
is empty.

For the original stochastic dispatching system with identi-
cal servers, the mean waiting time is E[W] = E[v(X, 0)] [33],
ie., (1—p)E[W] — 2p(1—®(1))E [X?]. This agrees with the
exact analysis of the asymptotically optimal policy for the
original stochastic system [19], suggesting that the far more
tractable fluid value function may be a good approximation
for the original value function even when p < 1.

We now consider the effect of job size variability on the
dispatching cost. Intuitively, since the policy uses job-size
information, we expect more variability to decrease costs,
which is in fact the case. Recall that for two random vari-
ables X and Y, X is more variable than Y in the convex
sense, X >, Y, if Ef(X) > Ef(Y) for all convex functions
f. The proof of the following is in the appendix.

Proposition 4 X >., Y = the cost is lower for any path
when X is a random job size rather than Y, so the optimal
cost is also lower.

Now let us consider the extreme case, where all jobs have
the same size, X = 1. This is equivalent to allowing an
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Figure 1: Optimal paths with exponential, uniform,
and two Pareto distributions when p = 0.7.

5
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Figure 2: Optimal paths depending on p for expo-
nential job sizes.

arbitrary job-size distribution but job sizes are not observed
or are not used in the dispatching algorithm. In this case,
we can show that any work-conserving dispatching policy is
optimal: the proof is in the appendix.

Proposition 5 All size-unaware work-conserving dispatch-
ing policies are equally good.

6. NUMERICAL EXAMPLES

6.1 Optimal fluid paths

Let us first study how the shape of the job size distribution
affects the optimal trajectories. Figure 1 shows the optimal
paths for exponential, uniform, and both bounded and nor-
mal Pareto distributions. The bounded Pareto distribution
with a = 1 is truncated to [1/66, 6], so that the mean is ap-
proximately one, and the variance is approximately 2. The
variance for the Pareto is infinite.

The scaling property is clearly visible, and the difference
in job-size distributions matters more when the relative im-
balance is larger. It also seems advantageous to empty one
queue at maximal speed when backlogs are identical regard-
less of the job-size distribution. (The feasibility conditions
are indicated by dashed lines on the graph.) The trajec-
tories are consistent with our conjecture that the relative
imbalance always increases along any optimal trajectory to
the origin (or until one queue empties).

Figure 2 shows the optimal paths with exponentially dis-
tributed job sizes at different loads. As p increases, the op-
timal strategy unbalances the queues more, consistent with
our heavy-traffic result.
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Figure 3: Heuristic and optimal paths and costs with
exponential job sizes and p=0.7.

6.2 Heuristic policies

Next, we compare some heuristic routing policies with the
optimal dispatching policy for fluid flow with exponential job
sizes and p = 0.7.

Figure 3(a) depicts the paths for different heuristics and
the optimal policy. The OPT path unbalances the workloads
strongly, but not as much as MWL, which does it maximally.
All of the chosen heuristics and the optimal policy have the
scaling property, so the costs for the whole (u1, uz2)-plane can
be characterized by following an arc at unit distance. The
resulting costs (value functions) are shown in Figure 3(b) as
a function of the angle 6 for points at unit distance, ||ul|| = 1.
The costs for all policies are increasing in 6 (decreasing in
the imbalance). When the fluid system starts with a large
imbalance (small #), RND and LWL have significantly larger
costs than STO or MWL.

Let us next consider heuristics for the original stochas-
tic dispatching system, using the value function of the fluid
model as an approximation for the value function of the
original system, and again assuming exponential job sizes.

We propose two heuristics that use the optimal fluid policy
when backlogs are large, but adjusts to avoid idling when the
short queue length is small. The F-BLB (Fluid with a buffer
lower bound) policy uses the fluid optimal policy when the
backlog of the short queue is greater than some threshold,
or buffer lower bound, uz > up, and uses the LWL policy
otherwise. Numerically we observe that up = 3 gives good
results. The F-BLBH policy uses the fluid optimal policy
when uz > up and the arriving job size exceeds a threshold
hs. Jobs of size less than hs are always sent to the short
queue, and LWL is followed if us < up. In the numerical
examples, we use (up, hs) = (2,1.5).

We also consider two sequential heuristics, DICE [18] and
CARD [19]. DICE routes a job of size z to the queue with the
least backlog if us +z < 7, where we use 7 = 6, i.e., the vir-
tual buffer can accommodate six average-sized jobs. CARD
uses two job-size thresholds to define “small,” “medium,”
and “large” jobs, and it always routes small jobs to the short
queue and large jobs to the long queue, and it routes medium
jobs to the short (long) queue if the short queue length is
below (above) some threshold. DICE generally tends to per-
form better than the sequential CARD heuristic [19], while
requiring a single tuning parameter that works well for all
loads, rather than CARD’s three parameters that all need
to be tuned for each load.

Finally, we consider the Short-to-Short and Long-to-Long
(SSLL) heuristic. Jobs shorter than a threshold hg are al-
ways routed to the shorter queue, and the rest go to the
longer queue. We use the load balancing threshold, h ~
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Figure 4: Performance with different heuristic poli-
cies relative to LWL as a function of p.

1.678 (that is specific to job-size distribution). This is also
known as (static) SITA with switch, which is an improve-
ment on SITA, where short jobs are always sent to a given
fixed queue, regardless of the relative backlogs.

Figure 4 shows the numerical results as a function of p for
the heuristics and the optimal policy. The y-axis is scaled
by the waiting time with LWL, as a base-line policy, i.e. the
relative performance metric for policy 7 is the ratio,

E[Wx]

EWuwi]

The numerical results are based on average waiting time
observed during relatively long simulation runs of 100-200
million arrivals. We can observe that F-BLB does a better
job than LWL as load increases (LWL is optimal when the
system is lightly loaded). CARD, while provably optimal
as the load goes to 1, does not perform well at lower loads.
On the other hand, the rather simple DiCE and F-BLBH
heuristics have near-optimal performance across all loads.
We also note that if the initial loads are balanced, LWL is the
individually optimal policy for strategic jobs that choose a
queue upon arrival, so we can view the curve for the optimal
policy in Figure 4 as a measure of the “cost of anarchy.”

7. FUTURE WORK

Many of our fluid results hold for two servers. We would
like to extend our results and heuristics to more than two
servers. One possibility for a heurisitc approach, along the
lines of the CARD heuristic, is to carefully control the fluid
to the short queue, while dividing the remaining fluid to
balance the loads of the other queues.

Heuristics based on the fluid model work well when there
are a large number of jobs in all queues. We expect that
they will work well for a model in which there are occasional
large bursts of traffic, and queues have finite buffers, so that
overflows are forced into shorter queues. We plan to explore
the impact on the optimal fluid paths when queues have
finite buffers, as well as the effect of bursty arrivals.

8. APPENDIX

8.1 Proof of Proposition 4

Consider two job-size distributions, X ~ Fx and Y ~ Fy,
with similar subscripts for T, g, and g~'. Because F, g, g~ !,



and z = 2(y’) are non-decreasing, we have

gx(h) < gv(h) Yh>0
9x'(2) > gv'(2) Vz€[0,0]

4

= Ox(y) > 0v(y) Yy €[-p/(1-p),p/(1-p)]
= Tx <Ty.

Also,
ax(h) = p / afx(@)de = pEIX|X < HP{X < h}

= p[l— E[X|X > h]P{X > h}]
= pll— E[(X — 1)L

Because p[l — (x — h)™] is convex in x, the result follows.

8.2 Proof of Proposition 5

Here our admissible dispatching policies are the fraction of
jobs, p, to be routed to server 2, depending on the backlogs,
(u1, u2), and by work conserving, we assume that when us =
0, the fraction of jobs routed to server 2 will be p = 1/(2X) =
1/(2p) (the maximal proportion to incur 0 costs, by making
the load = 1/2). Given the fraction of jobs routed to server
2 is p,

2p — 1 1—p)y
y/:(zlJ L O 4
-p 2p
and the cost rate is given by
T+
c=2p(puz+(1—plur) =2p (Ty - py) = pr—(1—p)y'y

which is similar to our earlier cost rate, with p replacing .
The total cost rate is

1 o1
Vget(T1, Y1) = T, {pw?/Z—/ 1 —p)y’ydw] :
0

Thus, ignoring constants and 2%, which does not depend
on the path, we obtain the following equivalent variational
problem for the optimal path:

z
T:/ y'ydz = max.
0

Integrating T" by parts gives

T , Y1 y%
/ yydw:/ ydy:g,
0 0

i.e. any allowed (work-conserving) path is optimal.
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