Outline:

Are highly scalable sequential dispatching policies asymptotically optimal?

Esa Hyytiä¹ Rhonda Righter²

¹University of Iceland / Aalto University ²University of California Berkeley

INFORMS APS 2023: June 29, Nancy, France

- Introduction
- ② Classification of Dispatching Policies
- Optimal policy
- Sequential ICE policies
- **6** Numerical Examples

INFORMS APS23 - Nancy, Fran

Hyytiä and Righter - Are highly scalable sequential policies asymptotically optimal?

Introduction

Dispatching Problem:

Families of Dispatching Policies:

- Static policies
 - No state information scalable and allows multiple dispatchers
- Oynamic policies
 - $\bullet \ \, \mathsf{Join\text{-}the\text{-}shortest\text{-}queue} \ (\mathsf{JSQ}) \\$
 - Least-work-left (LWL)

(a.k.a. JSW)

Static Policies

"Fast local decision at the dispatcher"

Dynamic Policies

"Complete state-information can be retrieved and utilized"

Static and Dynamic Policies

Two basic classes:

- Static policies
- Dynamic policies

INFORMS APS23 - Nancy, France

Hvvtiä and Righter – Are highly scalable sequential policies asymptotically optimal? INFORMS APS23 – Nancy, France

Hyvtiä and Righter - Are highly scalable sequential policies asymptotically optimal

Optimal Dynamic Policy

Size-aware setting:

- Size of the new job
- 2 Backlogs in the servers
- System state $(\mathbb{R}^+)^k$
 - With the new job, $(\mathbb{R}^+)^{k+1}$

(decision point)

Optimality equations

- Value function $v(\mathbf{z}): (\mathbb{R}^+)^k \to \mathbb{R}^+$ characterizes the optimal policy
- Optimality equations can be derived

(MDP formulation)

 No closed-form solution is available Numerical solutions can be computed

(even though computationally heavy)

Analytical Solution (1)

Proposition (Optimality equation with Poisson arrivals)

The value function $v(\mathbf{z})$ of the optimal policy satisfies

$$\nabla_{e} \nu(\mathbf{z}) = \lambda \left(w^{*}(\mathbf{z}) - \nu(\mathbf{z}) - \mathbb{E}[W] \right) \tag{1}$$

where

$$w^*(\mathbf{z}) := \mathbb{E}[\min\{u_i + v(\mathbf{z} + X\mathbf{e}_i)\}]$$
 (2)

with boundary conditions

$$\frac{\partial v(\mathbf{z})}{\partial u_i} = 0 \quad \text{when } u_i = 0. \tag{3}$$

- state $\mathbf{z} = (u_1, \ldots, u_k)$ and \mathbf{e}_i is the unit vector to direction i
- Poisson arrival process with rate λ (e.g. job/min),
- $\mathbb{E}[W]$ is the mean waiting time

(the performance metric)

X job size

(random variable with known distribution)

Value iteration (with general i.i.d. IATs)

Let

- a(t) is the pdf for the interarrival times A (and $\lambda = 1/\mathbb{E}[A]$)
- f(x) is the pdf of the job sizes X
- \bullet **e** = $(1, \ldots, 1)$, all-one vector

The value function can be obtained via value iteration:

$$v(z) \leftarrow \int_{0}^{\infty} a(t)w(z-te) dt$$
 (4)

where

$$w(\mathbf{z}) = \int_{0}^{\infty} f(x) \min_{i} \left\{ u_{i} + v(\mathbf{z} + \mathbf{e}_{i}x) \right\} dx - w_{0},$$

$$w_{0} = \int_{0}^{\infty} f(x)v(\mathbf{e}_{1}x) dx. \qquad (= \mathbb{E}[W])$$
(5)

INFORMS APS23 - Nancy, France

Hyvtiä and Righter – Are highly scalable sequential policies asymptotically optimal? INFORMS APS23 – Nancy, France

Value iteration in high level

Input: a function $v(\mathbf{z})$ $(\mathbb{R}^k \to \mathbb{R})$ Output: a better function $v^*(z)$

Hyvtiä and Righter - Are highly scalable sequential policies asymptotically optimal

Example: 4 servers

Numerical solution

Integrals can be computed numerically:

$$\begin{cases} w_0 = \int_0^\infty f(x)v(\mathbf{e}_1x) dx \\ w(\mathbf{z}) = \int_0^\infty \min_i^\infty f(x)[u_i + v(\mathbf{z} + \mathbf{e}_ix)] dx - w_0 \end{cases}$$
$$v(\mathbf{z}) = \int_0^\infty a(t)w(\mathbf{z} - t\mathbf{e}) dt$$

All this boils down to (many) weighted sums over grid points!

1. Shortest queue vs. the longest

"Optimal policy unbalances the backlogs in the servers"

Example: 4 servers (2)

Example: 4 servers (3)

2. The second shortest queue vs. the longest

"Optimal policy unbalances the backlogs in the servers"

3. The third shortest queue vs. the longest

"Optimal policy unbalances the backlogs in the servers"

INFORMS APS23 - Nancy, France

Hyytiä and Righter - Are highly scalable sequential policies asymptotically optimal?
INFORMS APS23 - Nancy, France

Hyytiä and Righter - Are highly scalable sequential policies asymptotically optimal?

Index Policy

Five! I have a new size x job over here! Any offers? Four! new job Dispatcher Eleven!

Sequential Policy

Sequential Policy

"Sequential policies consist of a cascaded set of admission policies"

Classification of Dispatching Policies

Theorem

 $STA \subset SEQ \subset IDX \subset DYN.$

Proof in the paper.

INFORMS APS23 - Nancy, France

 $Hyyti\ddot{a} \ and \ Righter-Are \ highly \ scalable \ sequential \ policies \ asymptotically \ optimal?$

INFORMS APS23 – Nancy, Fran

Hyytiä and Righter – Are highly scalable sequential policies asymptotically optimal

Fundamental question:

What is the optimal policy for each class?

Some results are available for certain classes/cases:

• STA: Size-Interval-Task-Assignment (SITA)

• IDX: Join-the-shortest-queue (JSQ) for the Exp-case

 \bullet $\ensuremath{\mathrm{DYN}}\xspace$ Size-aware case via value iteration (numerically)

What about sequential policies?

(Feng et al. 2005)

(Winston -77)

Derivation of a sequential policy

Suppose

- We have two servers
- Poisson arrival process
- Static (basic) policy

In this case:

- Server 1 knows:
 - its own backlog, and
 - 2 the distribution of the backlog in Server 2
- One policy iteration step can be carried out!

(details in the paper)

Admission costs (from Server 1 point of view) are:

$$c_1 = u_1 + \frac{\lambda_1(2u_1x + x^2)}{2(1 - \rho_1)}, \qquad c_2 = \mathbb{E}[W_2] + \frac{\lambda_2(2\mathbb{E}[W_2]x + x^2)}{2(1 - \rho_2)}, \tag{6}$$

Heuristic Sequential Policy: Server 1 accepts the job if $c_1 < c_2$.

Numerical example: $\alpha_0 = SITA$

Figure: Sequential dispatching policies $\gamma_1(x)$ (admission to server 1) based on the first policy iteration.

- In all cases, the admission curve is approximately a "triangle"
- As if server 1 had a finite buffer!

Idea: Define a sequential policy by finite buffers of increasing length!

Hvvtiä and Righter – Are highly scalable sequential policies asymptotically optimal? INFORMS APS23 – Nancy, France

Our new policies:

- Slice, the sequential ICE policy
- Dice, the dynamic ICE policy
 - Slice that relabels the servers in the increasing order of the backlog
- Mice, variant that learns the virtual buffer lengths

Hyvtiä and Righter - Are highly scalable sequential policies asymptotically optimal

Family of ICE policies

Simulation experiment: Two servers

Figure: Simulation results with well-known reference policies.

Simulation experiment: Two servers (2)

Figure: Simulation results with sequential policies.

Simulation experiment: Two servers (3)

Figure: Simulation results for two servers with dynamic policies.

Simulation experiment: Three servers

Observation:

• Under heavy load, Slice and Mice again become near optimal!

INFORMS APS23 - Nancy, France

Hvvtiä and Righter – Are highly scalable sequential policies asymptotically optimal?

Hyvtiä and Righter – Are highly scalable sequential policies asymptotically optimal?

Summary

Classification of dispatching policies:

• Static, Sequential, Index and Dynamic classes

STA \subset SEQ \subset IDX \subset DYN.

- Related to scalability
- 2 Optimal policy unbalances backlogs aggressively
- Sequential ICE-policies:
 - One parameter for each server (block) to tune (cf. machine learning)
 - Surprisingly good performance in heavy traffic regime
 - With relabeling, excellent performance across all load levels
 - Unbalancing the backlogs by "finite virtual buffers" seems sufficient!

Open Question:

As $\rho \to 1$, is the (optimal) sequential policy as good as the optimal dynamic policy?

Thanks!