
Applying Reinforcement Learning to

Basic Routing Problem

Sigurður Gauti Samúelsson and Esa Hyytiä

Department of Computer Science,
University of Iceland

Abstract. Routing jobs to parallel servers is a common and important
task in today's computer and communication systems. As each routing
decision a�ects the jobs arriving later, determining the (near) optimal
decisions is non-trivial. In this paper, we apply reinforcement learning
techniques to the job routing problem with heterogeneous servers and
a general cost structure. We study the convergence of the reinforce-
ment learning to a near-optimal policy (that we can determine by other
means), and compare its performance against heuristic policies such as
Join-the-Shortest-Queue (JSQ) and Shortest-Expected-Delay (SED).

Keywords: Job dispatching; Task assignment; Machine learning; Rein-
forcement learning; Value function; Parallel servers

1 Introduction

Routing jobs to parallel servers has been a long standing problem class for queue-
ing theory. The problem was �rst studied by Haight already in 1958 [1]. Today,
the same problem arises in many new contexts. For example, when routing data
tra�c in Internet, alternative routes can be modelled as parallel servers. Simi-
larly, in cloud computing, each task needs to be assigned to one of the available
servers. In supercomputing, the time scales are longer but the same fundamen-
tal question appears. Moreover, the heterogeneity of computing hardware is in-
creasing both in large-scale systems comprising several (thousands of) physical
computers, as well as within a single physical device (cf. GPUs vs. CPUs, and
new heterogeneous multi-core architectures for mobile devices)

In this paper, we study an elementary routing (or dispatching) problem to
heterogeneous parallel servers subject to a large class of cost structures. Both job
inter-arrival times and service times are assumed to be exponentially distributed.
The state information is the number of jobs in each server. One of the most
popular routing policies is Join-the-Shortest-Queue (JSQ), which chooses the
server with the fewest jobs. JSQ has been shown to be optimal in some speci�c
cases, but, especially when the service rates are unequal, the exact analysis of
the system becomes surprisingly tedious.

The optimization problem for the optimal routing falls in the category of
Markov decision processes (MDPs). However, our state space is countably in�nite
and optimal routing decisions are di�cult to determine. We apply reinforcement

2 Samúelsson and Hyytiä

learning techniques to this problem [2]. The in�nite state space remains as a
problem as it is impossible to visit every state (preferably multiple times) in any
�nite time, and therefore learning the optimal action for every state is impossible.

We work around this by focusing on a �nite subset of states where deci-
sions presumably matter the most, and rely on an appropriately chosen heuris-
tic routing elsewhere. E�ectively, similarly as in [3], we aggregate states so that
the resulting optimization problem has a �nite set of states, and then apply the
reinforcement learning in this state space. If a good heuristic policy is su�cient,
then the �rst policy iteration step (FPI) can be considered. In this case, it is
often possible to determine the corresponding value function analytically given
the basic policy is static and the system decomposes [4, 5]. The value function
can also be estimated by a set of short Monte Carlo simulations at each decision
point [6]. In this case, the basic policy can be dynamic.

The main contributions of this paper are as follows: First, we show that the
heuristic partitioning of the original in�nite state space into two classes yields a
computationally e�cient optimization problem for which machine learning tech-
niques can be applied. Second, we experiment with di�erent learning parameters
to gain insight on how fast a near-optimal policy can be learned. This is impor-
tant especially when the system parameters evolve in time.

The rest of the paper is organized as follows. The routing problem is formally
de�ned in Section 2, to which the reinforcement learning technique is in Section 3.
Section 4 gives some numerical examples, and Section 5 concludes the paper.

2 Model

The model for a parallel server system, illustrated in Figure 1(a), is as follows:

1. Jobs arrive according to a Poisson process with rate λ.
2. Jobs are routed immediately upon arrival to one of the K servers, where the

service time in server i is exponentially distributed with parameter µi.
3. We consider the so-called number-aware setting, where state n = (n1, . . . , nK)

means that server i has ni jobs. The state space is thus X = NK , where N
denotes the set of natural numbers, N = {0, 1, 2, . . .}.

4. Each state n has an associated cost rate rn at which the system incurs costs
when in state n.
(a) For the mean response time metric, the cost rate is the number of jobs,

rn = n1 + . . .+ nK .

(b) The costs can also deter the use of some servers by using server-speci�c
weights wi for response time,

rn =
∑
i

wini.

(c) If servers incur costs when busy, we have running cost rates,

r(r)n =
∑
i

w
(r)
i 1(ni > 0).

Applying Reinforcement Learning to Basic Routing Problem 3

λ

policy

α

µ1

µ2

µ3

S
Awithin S

a longer
visit in Sc

(a) Three server system (b) Sample transitions

Fig. 1. Partitioning the in�nite state space by the �nite subset S. Visits outside S may
involve several jobs arriving and departing before the state of the system returns to S.

Thus, serving a job in server i incurs an average cost of w
(r)
i /µi. Note

that this serves also as an elementary model for energy consumption.
(d) Similarly, with very minor modi�cations, we can also introduce admis-

sion costs ci,n incurred when a job enters server i in state n (cf. PASTA).

3 Learning The Optimal Routing Policy

Our aim is to devise a machine learning procedure that determines the optimal
policy. As mentioned, the state space of the system is in�nite, which tends to be
a problem as it is not possible to visit every state in �nite time. However, often
important routing decisions need to be made only in some relatively small sub-
set and elsewhere an appropriate heuristic rule such as Join-the-Shortest-Queue
(JSQ) does an adequate job. In particular, decisions near the origin (empty
system) are typically critical for the performance.

Therefore, similarly as in [3], we limit our focus on a �nite set of states S ⊂ X .
For example, with two server systems we can consider n× n boxes,

Sn = {(i, j) | i < n, j < n}.

However, unlike in [3], we are not limited to some speci�c shapes but S can be
arbitrary �nite subset of X . The idea is that we will determine the so-called
value function only for states in S. Consequently, S induces the action set A
that includes those states n for which all routing decisions lead to a state in S,

A = {n : n+ ei ∈ S ∀ i},

where ei is a vector with the ith component one and all other zero. Hence,
given the value function in S is known, it de�nes the corresponding policy in A.
Elsewhere, in Ac, we assume a �xed heuristic rule such as RND (random split),
JSQ or SED (shortest expected delay).1.

1 RND (random) chooses the server independently in random using some probabilities
pk, JSQ chooses the queue with the least number of jobs, and SED the queue with
the shortest expected response time, i.e., the admission cost to queue i is (ni+1)/µi.

4 Samúelsson and Hyytiä

The division of the state space, induced by S, is illustrated in Figure 1(b).
Note that there are (i) direct transitions within S, as well as, (ii) longer visits
outside S. For example, long busy periods with many jobs correspond to long vis-
its outside S. Eventually, after a random time T , a stable system still returns to
S. The costs C incurred during time T can obviously be high. Nonetheless, both
E[T] and E[C] can be estimated by straightforward simulations. E�ectively, we
view states in Sc as one or more aggregated super state(s): the system �escapes�
from S to somewhere in Sc, and then returns after a random time.

3.1 Learning the Value Function

Let v(n) denote the value function with a �xed routing,

v(n) , lim
t→∞

E[V (n, t)− rt],

where V (n, t) denotes the cost incurred during time (0, t) when initially in state
n and r is the long-run mean cost rate (assumed to be �nite). The value function
for any state n ∈ S satis�es (cf. Howard's and Bellman's equations [7, 8]),

v(n) = c(n,S)− t(n,S) · r +
∑
m∈S

pS(n,m) · v(m), (1)

where c(n,S) denotes the average costs incurred since arriving to state n until
the system moves to a (new) state in S (that can be the same state n if the
system �rst moves to a state in Sc), t(n,S) denotes the corresponding mean
time interval, and pS(n,m) is the probability that the next state (in S) is m.
Equation (1) is the basis for the Reinforcement learning algorithm aiming to �nd
the optimal control in A.

Suppose �rst that the routing is �xed ω0(n), and the aim is to determine
(estimate) the value function in S corresponding to ω0(n). Let nj ∈ S denote
the jth state visited in S, i.e., nj is a sequence of states the system visits from
which the states outside S have been omitted. Then the learning equations for
the value function are

C ←C + cj ,
T ←T + tj ,
r ←C/T,

v(nj)← (1− αj)v(nj) + αj [cj − tj · r + v(nj+1)] ,

(2)

where cj is the costs incurred since entering state nj until reaching state nj+1,
tj is the corresponding time interval, and αj is the learning rate at step j. The
�rst three equations provide an estimate for the mean cost rate r, and the last
equation updates the estimate for the value function. Initially, the learning rate
can be set a high value, close to one, and then, as time goes by, it is decreased
gradually to zero (or a value close to zero). For example, one can use

αj = e−βj ,

Applying Reinforcement Learning to Basic Routing Problem 5

where β > 0 is an appropriately chosen constant. If the system parameters keep
on changing, as often is the case in practice, then one can use some �xed small
value, e.g., α = 0.1.

As the constant o�set in the value function is irrelevant (for routing deci-
sions), we can �x it, e.g., so that v(0) = 0. In this case, whenever empty state
n = (0, . . . , 0) is updated, we immediately subtract its new value from all states,

v(n)← v(n)− v(0), ∀n. (3)

Equation (2), combined with (3), learns the value function for states S for a
given routing policy.

3.2 Policy Improvement

Given the value function, one policy iteration round can be carried out, yielding a
new routing policy that is better than ω0(n) (unless ω0(n) was already optimal).
This is known as the �rst policy iteration (FPI). In our case, when a job arrives
in state n ∈ A, the improved policy routes the job to server j such that

v(n+ ej) ≤ v(n+ ei) ∀i.

Possible ties can be resolved, e.g., in random. Letting v0(n) denote the value
function corresponding to ω0(n), the improved routing policy is

ω1(n) , argmin
j

v0(n+ ej).

Example 1. Suppose we have K = 2 identical servers, µ1 = µ2 = µ, and arrival
rate λ < 2µ. The (basic) routing policy is uniform random split routing a job
to server 1 with probability of 0.5, and otherwise to server 2. As the routing
decision does not depend on the state of the system, the routing policy is static
and the value function decomposes,

v(n) = v1(n1) + v2(n2).

Suppose further that the cost structure is the response time metric. Then

vi(n) =
n(n+ 1)

2(µi − λi)
− λµ

(µ− λ)3
,

where now µi = 1 and λi = 0.5 · λ. As the constant in the value functions is
irrelevant, we can as well choose v(0, 0) = 0, yielding

v(n) =
n1(n1 + 1)

2(µ− λ/2)
+
n2(n2 + 1)

2(µ− λ/2)
=
n1(n1 + 1) + n2(n2 + 1)

2µ− λ
. (4)

For example, with µ = 1 and λ = 1, the mean cost rate is r = 2 and (4) gives

v(n) =

0 2 6 12
2 4 8 14 . . .
6 8 12 18
12 14 18 24

...
. . .

 (5)

6 Samúelsson and Hyytiä

In policy iteration, one next determines the value function v1(n) correspond-
ing to ω1(n), yielding a new policy ω2(n). This is repeated until the mean cost
rate no longer improves and an optimal routing policy has been found. In con-
trast, with reinforcement learning, one updates the routing policy at the same
time as the estimates for the (optimal) value function. This leads to the algo-
rithm described in the next section.

3.3 Reinforcement Learning

Several reinforcement learning techniques have been proposed in the literature.
For example, in Q-learning the aim is to learn the utility function Q(s, a) for
each state s and corresponding action a. With the optimal policy, one always
chooses such action a that maximizes the utility. Q-learning is typically applied
to models with a �nite horizon or a discounting factor. In this case, the dynamic
programming equations (1) de�ning the value function also look di�erent. In
particular, there is no need to subtract the mean cost rate.

However, our problem formulation has the in�nite time-horizon and the mean
cost rate r is an integral part of the dynamic programming equations (1), lead-
ing to update rules (2). Table 1 describes the complete reinforcement learning
algorithm based on (2).

Note also that the reinforcement learning involves two basic modes of opera-
tion: exploration and exploitation. Exploration refers to making random decisions
which provide information on the value of actions that currently may seem non-
optimal. Exploitation, on the other hand, refers to decisions that utilize the
available information and choose (typically) the action that appears to be the
optimal. Choosing the ratio between exploration and exploitation is an impor-
tant optimization problem in reinforcement learning. In our algorithm, we have
an implicit function exploit(j) that as a function of time decides (in random)
whatever to choose the action that appears optimal (exploit) or to choose a ran-
dom server (explore). Typically, it is important to explore more at start, but as
the time goes by, exploitation should become the default action.

Example 2. Let us continue with the previous example. As a basic policy, we
now utilize JSQ outside A. Within A, the routing policy is according to the
Reinforcement learning rule. As the system has two identical exponential servers,
the optimal routing policy is JSQ also within A. That is, once Reinforcement
learning algorithm converges, the resulting value function should be such that

v(n+ e1) < v(n+ e2) ∀ n ∈ A,

whenever n1 < n2, and vice versa, which means that

ω(n) = argmin
j

nj ∀ n ∈ A,

with ties resolved in an arbitrary fashion.

Applying Reinforcement Learning to Basic Routing Problem 7

Initialization:

v(x)← 0 ∀ x ∈ S
j ← 0 {Step counter}
x← (0, . . . , 0) {Initial state, x ∈ S }
n← (0, . . . , 0) {Initial previous state}
t← 0 {Time between visits in the observed states S}
c← 0 {Incurred costs between the visits}
T ← 0 {Total (discounted) elapsed time}
C ← 0 {Total (discounted) costs}

After every time step ∆t:

t← t+∆t {Time since the last departure or arrival}
c← c+∆c {Costs incurred during ∆t}
if New job then

if x /∈ A then

k ← argmin
i

ni {outside A use (e.g.) JSQ}

else if exploit(j) then
k ← argmin

i
v(n+ ei) {Ties in random}

else

k ← random(1, . . . ,K) {Explore, in random}
end if

x← x+ ek {Send the new job to server k}
else if Departure from server k then

x← x− ek {Remove a job from server k}
end if

if x ∈ S then

j ← j + 1
α← e−βj {or α is a small constant}
T ← γT + t {e.g., γ = 0.99}
C ← γC + c
r ← C/T {Mean cost rate}
v(n)← (1− α)v(n) + α [c− t · r + v(x)]
if n = 0 then
∆← v(0) {Adjust o�sets}
for all n ∈ S do

v(n)← v(n)−∆
end for

end if

t← 0 {New epoch starts}
c← 0
n← x

end if

Table 1. Reinforcement learning for optimal routing in sub-space A.

8 Samúelsson and Hyytiä

 0.1

 1

 10

 100

 1000

200k 400k 600k 800k 1M

α = 0.1

α = e
-10 t / t2

M
S

E

Simulation time

Learning the value function: 6x6

 0.1

 1

 10

 100

 1000

200k 400k 600k 800k 1M

α = 0.1

α = e
-10 t / t2

M
S

E

Simulation time

Learning the value function: 4x4x4

(a) Two servers, 6× 6 box (b) Three servers, 4× 4× 4 box

Fig. 2. Learning of the value function with a �xed learning rate α = 0.1 and when
α = e−10t/t2 for two and three server example scenarios. On the x-axis is the time and
the y-axis corresponds to the mean squared error (MSE) in log-scale.

4 Numerical Examples

In this section, we discuss some numerical experiments with the reinforcement
learning. First we assume identical servers so that the correct results are known
in advance (see examples 1 and 2). Then we consider two heterogeneous systems
and compare reinforcement learning to some well-known heuristic policies.

4.1 Learning the Value Function

In the �rst numerical experiment, we study how fast the value function can
be learned. To this end, we assume two or three identical servers with µ = 1,
unit arrival rate λ = 1, and the RND basic policy. The boxes for the substate
spaces have 6 × 6 and 4 × 4 × 4 states, respectively, which (relative) values
are to be learned. Moreover, we use either a �xed α = 0.1, or let α decay
exponentially, α(t) = e−βt/t2 , where β = 10 and t2 is the length of the simulation.
The simulation algorithm is otherwise the same as in Table 1, but the server for
the new jobs is always chosen using the basic policy, i.e.,

k = ω0(x),

where ω0 is RND in our case. That is, we update v(x) but do not use it to
make (better) routing decisions. Note that we could learn the value function of
any given policy, but we have chosen RND because its value function is known
exactly, and we see how fast the system learns it.

Figure 2 depicts the convergence of the learned value function to the known
exact solutions, given in (5) for two servers. On the x-axis is the simulation time,
and the y-axis corresponds to the mean squared error (MSE),

MSE =
1

N

∑
i

(v̂i − vi)2,

Applying Reinforcement Learning to Basic Routing Problem 9

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10k 20k 30k 40k 50k

α = 0.1

α = e
-10 t / t2

O
p
ti
m

a
l
p
o
lic

y

Simulation time

Learning the optimal policy: 6x6

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10k 20k 30k 40k 50k

α = 0.1

α = e
-10 t / t2

O
p
ti
m

a
l
p
o
lic

y

Simulation time

Learning the optimal policy: 4x4x4

(a) Two servers, 6× 6 box (b) Three servers, 4× 4× 4 box

Fig. 3. Learning the optimal policy happens much faster.

where N = 62 and N = 43 in our case. Note that the y-axis is in logarithmic
scale. We can see that at with a �xed α = 0.1, the learning converges fast to a
certain level. When α decreases exponentially (with β = 10), the learning rate is
slower, but the �nal result is more accurate, as expected. However, the estimates
for the value function are useful long before that, as we will see next.

4.2 Learning the Optimal Policy

Next we study how the reinforcement learning algorithm converges to the opti-
mal policy in this elementary case. That is, with the identical servers and the
response time cost metric, the optimal policy is JSQ. At start, the value function
is initialized to zero, and thus random server would be chosen at every state.
However, as di�erent states have been visited and the corresponding updates for
the value function recorded, we soon start to make correct decisions.

Figure 3 depicts the fraction of states where the correct routing decision is
made as a function of the simulation time. We can observe that the optimal
behavior is learned much faster than the �correct� values for the value function.
This suggests that a routing policy based on the reinforcement learning can
quickly adapt to changes in its operating environment. In such cases, a �xed
learning rate such as α = 0.1 is naturally preferred.

4.3 Heterogeneous Service Rates

Let us next consider a heterogeneous system with service rates (µ1, µ2) = (3, 1),
i.e., server 1 is now three times faster than server 2. We note that optimal routing
policy for heterogeneous systems is not available in closed-form for the mean
response time metric even when the service times are exponentially distributed.
The near-optimal policy can be determined numerically [3], and here we apply
the reinforcement learning algorithm to the same end.

The simulation results are depicted in Figure 4(a). On the x-axis is the o�ered
load ρ, and the y-axis corresponds to the scaled mean response time, (1−ρ)E[T].

10 Samúelsson and Hyytiä

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.2 0.4 0.6 0.8 1

RND

JSQ

SED

RL

(1
-ρ

)
E

[
T

]

ρ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

RND
JSQ

RL

(1
-ρ

)
E

[
C

]

ρ

(a) Heterogeneous service rates (b) Heterogeneous running costs

Fig. 4. Left �gure (a) depicts the simulation results with heterogeneous service rates
(µ1, µ2) = (3, 1). Right �gure (b) shows the simulation results with unequal running

cost rates, (r
(r)
1 , r

(r)
2) = (0, 10).

With the load balancing random split, the system reduces into K independent
M/M/1 queues, and the mean response time is

E[T] =
∑
i

µi∑
j µj
· E[Ti] =

∑
i

1∑
j µj

1

1− ρ
=

K

(1− ρ)
∑
j µj

,

and thus with the two servers the scaled mean response time with RND is 1/2.
Other reference policies are JSQ and SED. The reinforcement learning (RL)
uses SED outside the 6 × 6 box, where the optimal value function is learned
and utilized to make near-optimal routing decisions. We can observe that the
performance with RL indeed is better than with JSQ or SED.

4.4 Unequal Running Costs

Finally, suppose we have two equally fast servers, (µ1, µ2) = (1, 1), but server 2
is owned by a third party and they charge us according to used CPU cycles so

that the corresponding running costs are (r
(r)
1 , r

(r)
2) = (0, 10). In other words,

processing a job at server 2 costs on average r
(r)
2 /µ2 = 10, whereas at server

1 it is free. In addition to the running costs, the mean response time is also
minimized (i.e., the mean response time is the quality of service component)
and the total cost rate at state (n1, n2) is given by

rn = n1 + n2 + 10 · 1(n2 > 0).

The simulation results are depicted in Figure 4(b). As µ1 = µ2, SED reduces
to JSQ and it has been omitted. On the x-axis is the o�ered load ρ, and the
y-axis corresponds to the scaled mean cost rate, (1 − ρ)E[C]. We can see that
all policies, RND, JSQ and RL, have the same shape. Moreover, the dynamic
policies, JSQ and RL, seem to converge to the same mean cost rate as ρ→ 1. At

Applying Reinforcement Learning to Basic Routing Problem 11

this limit, both servers must be busy all the time and the unequal running cost
rates no longer matter. However, when ρ is small or moderate, the reinforcement
learning based policy RL reduces costs signi�cantly. It routes jobs to server 2
only to the extend it is meaningful!

5 Conclusions

A straightforward reinforcement learning approach is studied in this paper. The
approach is more general than our numerical examples suggest. First, as men-
tioned, the cost structure can be rather general and could, e.g., penalize the sys-
tem when a queue length exceeds given thresholds. Second, without any modi�-
cations, the number of servers can be more than two or three. The �nite substate
space unavoidably becomes larger, which eventually limits the applicability to
small systems in terms of number of servers. However, if some servers are iden-
tical, the corresponding symmetries can be taken into account to mitigate the
scaling problem. Third, it is also straightforward to include batch arrivals to the
model and the learning algorithm. By adjusting the batch size distribution, more
bursty arrival processes can be modelled, which makes the approach more appli-
cable. Fourth, in our case, the jobs were identical. It is possible to introduce job
classes, having, e.g., di�erent size distributions or holding cost rates. However,
each job class increases the dimensionality of the state space, and therefore we
are again limited to a small number of job classes.

In our future work, we plan to investigate on how well the reinforcement
learning based dispatching policy adapts to changing environment. In particular,
we will compare it to other adaptive and (load) insensitive routing policies.

Acknowledgements

This work was supported by the Academy of Finland in the FQ4BD project
(grant no. 296206) and by the University of Iceland Research Fund in the RL-
STAR project.

References

1. F. A. Haight, �Two queues in parallel,� Biometrika, vol. 45, no. 3-4, 1958.
2. C. Watkins, �Learning from delayed rewards,� Ph.D. dissertation, Cambridge Uni-

versity, 1989.
3. E. Hyytiä, R. Righter, and S. G. Samúelsson, �Beyond the shortest queue routing

with heterogeneous servers and general cost function,� in ValueTools, Dec. 2017.
4. P. Whittle, Optimal Control: Basics and Beyond. Wiley, 1996.
5. E. Hyytiä, �Lookahead actions in dispatching to parallel queues,� Performance Eval-

uation, vol. 70, no. 10, pp. 859�872, 2013, (IFIP Performance'13).
6. E. Hyytiä and J. Virtamo, �Dynamic Routing and Wavelength Assignment Using

First Policy Iteration,� in the Fifth IEEE ISCC'2000, Jul. 2000, pp. 146�151.
7. R. A. Howard, Dynamic Probabilistic Systems, Volume II: Semi-Markov and Deci-

sion Processes. Wiley Interscience, 1971.
8. R. Bellman, Dynamic programming. Princeton University Press, 1957.

