
Dynamic Routing Problems

with Delayed Information

Esa Hyytiä1 and Rhonda Righter2

1 Department of Computer Science, University of Iceland
esa@hi.is

2 Department of Industrial Engineering and Operations Research,
University of California Berkeley

rrighter@berkeley.edu

Abstract. The problem of routing jobs to parallel servers is known as
the dispatching problem. A typical objective is to minimize the mean
response time, which according to Little's result is equivalent to mini-
mizing the mean number in the system. Dynamic dispatching policies
are based on information about the state of each server. In large or real-
time systems, up-to-date and accurate system state may not be available
to dispatcher. We consider, cases where state information at some time
in the past is available, or completed jobs are acknowledged after some
propagation delay, and give e�cient dispatching policies based on the
incomplete state information. The dynamic dispatching policies tailored
to this setting are evaluated numerically.

Keywords: job dispatching · delay-aware policy · JSQ · SED.

1 Introduction

We consider parallel server systems known as dispatching systems under a set-
ting of imperfect state information. Dispatching systems comprise a dispatcher
and a pool of parallel servers. New jobs arrive to the dispatchers, which then
routes them to di�erent servers so as to balance the load or to minimize the
mean response time. Dispatching policies such as join-the-shortest-queue (JSQ)
expect the exact and current number in queue from all servers [6], which we re-
fer to as perfect state information. With perfect state information, JSQ is often
the optimal policy with respect to mean response time, e.g., with homogeneous
exponential service times [16].
In contrast, we study a scenario where the dispatcher has imperfect information
about the current state of each server. For example, in large or real-time systems,
it may not be feasible to query the state of each server prior too each routing deci-
sion. In our setting, servers inform the dispatcher about state changes. However,
such reports are not immediately available to the dispatcher, but are delayed [7].
Note that applying the basic JSQ without taking the delays into account can
even lead to oscillations in the number at servers [12]. Finding optimal policies is
intractable for the general model. Artiges studies properties of an optimal policy

2 Hyytiä and Righter

n0

t1 t2 t3t0

n new jobs

t

current

state N

Λ

new jobs

α

dispatcher
π1(n) µ1

π2(n) µ2

πk(n) µk

.

.

.

Fig. 1. Dispatching system with imperfect information (left) and evolution of the num-
ber in the server since the last status update at time t0 (right).

for two servers using MDP's [3]. Litvak and Yechiali [8] consider the trade-o� be-
tween waiting for information before routing and routing without information,
and Altman et al. [2] study a discrete-time version with deterministic service
times. Most recent work on routing with delayed information has focused on
asymptotic regimes [11, 13, 15]. We focus on analyzing heuristics.

In general, the dispatching decision can be based on di�erent amounts of infor-
mation:

1. No information. In this case, the server must implement a static Bernoulli
split (RND) policy that may be based on the arrival rate Λ and service
rates µ. In particular, in the heterogeneous case where µi 6= µj for some i, j,
one can, e.g., balance the load by routing a job to server i with probability
pi = µi/

∑
j µj . Optimal splitting probabilities can also be determined [4].

2. Routing history refers to the case where the dispatcher records past rout-
ing decisions, but gets no feedback from the servers. In this scenario one
often implements the Round-Robin (RR) policy, or a weighted variant in
the case of heterogeneous servers. RR is often the optimal policy in this
type of setting [5, 10, 9]. Consequently, whenever the state information is un-
clear, e.g., because the feedback loop is slow or acknowledgements are simply
unreliable, RR can be expected to be near-optimal.

3. Perfect information means that the dispatcher knows the number at each
server exactly. For example, the well-known JSQ and SED (Shortest Ex-
pected Delay) policies generally assume this (see Section 3.1).

4. Delayed information means that the dispatcher knows the routing history
and the number at each server at some time instant in the past. Consequently,
it can determine the distribution for the state at each server. This scenario
is depicted in Figure 1.

Our focus in this paper is the last scenario 4). In scenarios 1) and 2), less infor-
mation is available, and thus the corresponding policies can be readily applied
also in our setting. In contrast, dispatching policies based on perfect information,
as assumed in scenario 3), serve as lower bounds.

Dynamic Routing Problems with Delayed Information 3

procedure Update(π,∆, a)
k ← |π| . initially at most k − 1 jobs
π∗ ← (0, . . . , 0) . |π∗| = k − 1 + a
for i = 0, . . . , k − 1 do . condition on i jobs initially

s← 1 . �nd s = P{empty system}
for j = 0, . . . , i− 1 do . condition on j jobs departing

p← (µ∆)j/j! · e−µ∆ . pr. that j jobs completed
π∗
i−j+a ← π∗

i−j+a + pπi
s← s− p

end for

π∗
a ← π∗

a + sπi . a jobs to an empty system
end for

return π∗

end procedure

Update of the state distribution after time ∆.

2 Server State Known in the Past

Let us �rst consider a single server and its state distribution at some time t.
Suppose that the available information is the exact number of jobs at the server
at time t0, t0 ≤ t, after which n jobs have been routed to the server, at time
instants t1, . . . , tn, such that t0 < t1 < . . . < tn ≤ t. The unknown current
number at the server is denoted by N . The situation is depicted in Figure 1. The
thick yellow curve depicts one possible sample path. Clearly, 0 ≤ N ≤ n0 + n.

To summarize, we assume that the dispatcher knows the following:

1. At time t0 server had exactly n0 active jobs. This is the most recent status
update. Note that, because of the exponential services and Poisson arrivals,
earlier updates can be ignored.

2. Since then, n new jobs have been routed to the server at time instants
t1, . . . , tn (routing history is known)

3. Service times are i.i.d., X ∼ Exp(µ) (µ is assumed to be known/learned)

First we make an observation regarding the exponential service times.

Remark 1: The G/M/1 queue can be seen as a system where the server runs
an exponential timer that triggers at rate µ. Every time the timer goes o� one
job is released if present. If the system was empty, the server �shoots a blank�.

The information about the state at time t0 could also be a distribution, but for
now we assume that status updates have no errors. The �rst task is to determine
the state probability distribution at time t = tn+1 based on this information.
Let ∆i = ti − ti−1 and Di ∼ Poisson(µ∆i), where Di denotes the number of
potential departures during the time interval ∆i. Let N1 denote the number in
the system immediately after time t1, for which it holds that

N1 = 1 + (n0 −D1)
+, where 0 < N1 ≤ n0 + 1,

4 Hyytiä and Righter

procedure FindN(n0, t0, . . . , tn, t)
π = (0, . . . , 0, 1) . πn0 = 1
for i = 1, . . . , n do

π ← Update(π, ti − ti−1, 1)
end for

π ← Update(π, t− tn, 0)
return π

end procedure

Algorithm 1: Computation of the state distribution based on the routing history
and the state of the server at the start.

and (x)+ := max{0, x}. Similarly, immediately after time tj , j = 2, . . . , n,

Nj = 1 + (Nj−1 −Dj)
+, where 0 < Nj ≤ n0 + j.

No job arrives after the �nal time interval (tn, t), and thus the number in the
system at time t is

N = (Nn −Dn+1)
+, where 0 ≤ N ≤ n0 + n.

Note that N depends on the service rate µ, but not on parameters of the arrival
process because we know the actual arrival pattern during (t0, t). That is, we
assume exponential service times, but the arrival process can be arbitrary, i.e.,
the so-called G/M/1 model. Putting these together yields Algorithm 1 that com-
putes the current state distribution π = (π0, . . . , πn0+n) of the random variable
N , where πi = P{N = i}.

Example 1. Let us consider the arrival pattern depicted in Figure 1. At time
t0 = 0, the system has n0 = 3 jobs (latest status update received). New jobs
arrive at time instants {1.6, 3.3, 4.2}, and the service rate is µ = 1. Figure 2
illustrates how our belief on the number Nt behaves as a function of time t. After
the last arrival, at time t = 4.2, both the mean E[Nt] and the standard deviation
σt gradually decrease to zero. Eventually we can be fairly sure that the system
is empty even though no status report has been received since time t0 = 0. A
naïve assumption that the service time of all jobs is exactly the mean 1/µ = 1
would imply that the server is idle already at time t = 6. This is far from the
reality, as we can see from the �gure!

3 Dispatching with Known Past State

Suppose next that a dispatcher is routing jobs to k servers. The dispatcher keeps
record of jobs it has routed to each server (say a job id and time stamp) that
allows it to deduce which jobs have not been acknowledged yet by each server.
If we assume (i) �rst-come-�rst-served (FCFS) scheduling, and (ii) that there is
no reordering (jobs arrive �immediately� to the server), a message about com-
pletion of job i acknowledges also all earlier jobs. Consequently, the dispatcher

Dynamic Routing Problems with Delayed Information 5

(a) Mean number, E[Nt]± σt (b) Uncertainty, ±σt

Fig. 2. Evolution of the mean number in the system with con�dence intervals.

knows the exact number at the server at time t0 when the acknowledgement
was generated. We note that this resembles how (basic) TCP works: cumula-
tive acknowledgments inform the sender that all octets up to a given point have
reached the destination.
In general, we can assume any work-conserving scheduling discipline because
(i) each departing job is (eventually) acknowledged, (ii) our performance met-
ric is the mean response time (cf. Little's formula), (iii) service is exponential.
Hence, our results hold also for processor sharing (PS) and last-come-�rst-served
(LCFS).
In summary, our model for the dispatching system is as follows:

1. Jobs arrive to the dispatcher at inter-arrival times3 Ai.
2. Job sizes are independent and exponentially distributed.
3. The server pool comprises k servers with service rates µ1, . . . , µk. Thus the

service time at server j is Xj ∼ Exp(µj).
4. The dispatcher routes jobs immediately upon arrival to the servers. The

routing decision is irrevokable.
5. The dispatcher is aware of (e.g., it has learned) the server-speci�c service

rates µj . Moreover, it is aware of the state of each server at some time in

the past, (n
(j)
0 , t

(j)
0), where (n

(j)
0 , t

(j)
0) gets updated by acknowledgements as

the process continues.

3.1 Dispatching Policies

Let us next introduce the dispatching policies considered in this paper.

P1 Round-Robin (RR) assigns jobs sequentially to all servers, 1, 2, . . . , k, 1, 2,
We note that RR is the optimal policy with respect to the mean response

3 The results for the distribution of N , and therefore also the corresponding policies,
hold for any arrival pattern, even non-renewal, though in our numerical examples
we consider only Poisson arrival processes.

6 Hyytiä and Righter

time in this setting with identical servers and no acknowledgements are avail-
able. Moreover, given RR ignores any acknowledgements, it is also agnostic
to any delays in them.

P2 Join-the-Shortest-Queue (JSQ) chooses the queue with the least number
of jobs,

αJSQ := argmin
j

Nj .

Ties are reseolved randomly. Note that this policy requires perfect informa-
tion, i.e., that the Nj are known.

P3 Naïve JSQ0: We can adapt JSQ to our setting by falsely assuming that
the available information describes the current state accurately, i.e., that

Nj ≈ n(j)0 + n(j), and

αJSQ0
:= argmin

j
n
(j)
0 + n(j).

In other words, we apply JSQ without being aware of the delays in acknowl-

edgements. Note that n
(j)
0 + n(j) corresponds to the maximum number of

jobs server j may have at time t. This policy will be equivalent to RR if we
start empty and servers are homogeneous.

P4 Time-aware JSQe: Given we can compute the distribution of Nj for all j,
JSQ can be generalized to the case of delayed information by choosing the
queue which is expected to have the least number of jobs by de�ning4

αJSQe
:= argmin

j
E[Nj].

3.2 Numerical Example 1

The �rst example system consists of 4 identical servers with service rates µi =
1 for all i. Jobs arrive according to a Poisson process with rate λ = 3 to a
dispatcher. Initially, at time t = 0, the servers have n0 = (1, 2, 3, 4) jobs, which
is the available information to dispatching policies JSQ0 and JSQe throughout
the time horizon (so there is no feedback from the servers). We assume RR will
assign the next job to server 1. (This would be consistent with partial utilization
of the available information about the initial state.) In contrast, RND is static,
whereas JSQ utilizes the exact state information for every action.
The numerical results with 10, 000 simulation runs are depicted in Figure 3. On
the x-axis is the time t, and the y-axis corresponds to the average costs incurred

4 In principle, it is possible that no job has departed from a busy server since the
start. That is, the number of possible states increases without bound as the process
continues, and evaluating the distribution and its mean eventually becomes cumber-
some. As a workaround, our implementation of JSQe truncates the state-space to
kmax = 20 jobs (per server), and updates the state probabilities accordingly when-
ever a new job arrives. Given the load is reasonable, the e�ect of this modi�cation
will be negligible.

Dynamic Routing Problems with Delayed Information 7

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50 60 70 80 90 100

E
[
N

(t
)

/
t
]

Time

RND
RR
JSQ0
JSQe
JSQ

Fig. 3. The evolution of the mean cost from the known initial state n0 = (1, 2, 3, 4) as
a function of time with four identical servers.

µα

history

acknowledgements

Fig. 4. Propagation delay in�uences the optimal dispatching.

during (0, t),

C(t) :=
1

t

∫ t

0

E[Nsys(h)] dh,

where Nsys(h) denotes the total number of jobs in the whole system at time
h. Obviously C(t) → E[Nsys] as t → ∞, and we can observe that the chosen
dispatching policies fall into three groups: RND has the worst performance,
{RR, JSQ0, JSQe}, all reduce to RR as the time increases and the pure JSQ
is the best (thanks to the exact state information). A closer look at the middle
group shows that RR is initially worse than JSQ0 and JSQe, of which the latter
is marginally better. That is, JSQe utilizes the available information best.

3.3 Numerical Example 2

Let us now consider a scenario where the dispatcher receives acknowledgements
from job completions after a �xed delay of d (see Figure 4), and where t0 is set
to be the time the last acknowledgement was received.

8 Hyytiä and Righter

RR

JSQ

JSQ0

JSQe

0 1 2 3 4

1.6

1.8

2.0

2.2

2.4

2.6

Delay in ACKs

M
e
a
n

R
e
s
p
o
n
s
e

T
im

e

Fig. 5. Simulation results with 4 identical servers as a function of ACK delay d.

0 1 2 3 4
-2

-1

0

1

2

3

4

5

Delay in Acks

E
rr

o
r

in
N

w
it
h

J
S

Q
0

0 1 2 3 4
-2

-1

0

1

2

3

4

5

Delay in Acks

E
rr

o
r

in
N

w
it
h

J
S

Q
e

0 1 2 3 4
-2

-1

0

1

2

3

4

5

Delay in Acks

E
rr

o
r

in
N

w
it
h

J
S

Q
e
d

(a) JSQ0 (b) JSQe (c) JSQed

Fig. 6. Mean and standard deviation of the bias in the server state estimates, Q, with
JSQ0, JSQe and JSQed as a function of ACK delay d.

Figure 5 depicts the mean response time with RR, JSQ, JSQ0 and JSQe, as a
function of the ACK delay d that is varied from zero to 4. JSQ0 behaves as if
d were zero, i.e., the decision is based on estimating the number at the server
simply by N̂ = n0+n (which is a strict upper bound). On the other hand, JSQe

is based on the mean of the distribution computed using Algorithm 1 with t0, the
time of the most recent acknowledgement. Initially, when d = 0, JSQ0 reduces
to JSQ and it is thus optimal in our setting. In contrast, the performance with
JSQe is signi�cantly worse. However, when d increases JSQe eventually becomes
better than the elementary JSQ0, and d =∞ corresponds to example 1.

While RR, JSQ0 and JSQe are all realistic choices in the given scenario, the pure
JSQ cannot be implemented because it requires the knowledge about the exact
number at each server. However, the gap between it and the realistic policies
corresponds to the price of information delay quantifying the increase in the
mean response time due to the delay d. As RR is agnostic and does not even
try to utilize the incomplete information about the servers' states, it serves as
an upper bound for the price of information delay in our setting.

Next we take a closer look at the quantities JSQ0 and JSQe policies are based
on, i.e., the expected number in each server upon dispatching, denoted by N̂j .

Dynamic Routing Problems with Delayed Information 9

We can omit the subscript j as this quantity is statistically the same for each
server. Figure 6(a) and (b) depict the di�erence between the state estimates of
JSQ0 and JSQe, and the actual number in the server upon dispatching,

Q := N̂ −N,

We observe that JSQ0 overestimates the situation, which is explained by the fact
that it is a strict upper bound for N because it includes also all the unacknowl-
edged completed jobs into the estimate. Interestingly, JSQe underestimates the
situation, and thus both get it quite wrong!

4 Delayed Completion Acknowledgement

In the last example, we made an interesting observation. Even though JSQe was
supposed to have a better understanding about the current state of each server,
this was not necessarily the case assuming delayed acknowledgements of service
completions. Moreover, its performance can be worse than that of JSQ0, which
is easier to implement. This is somewhat unexpected and calls for a closer look.
Note that our implementation of JSQe is based on the assumption that the
absence of more recent ACKs conveys no information. Similarly, JSQ0 assumes
that all unacknowledged jobs are still being processed. In our example scenario
with a �xed delay on acknowledgements, both assumptions are wrong! We do
know that job completions that we are not yet aware of may occur only during
the time interval Id = (t − d, t). Thus instead of considering time intervals
Ii = (ti, ti−1), we need to consider their intersection with Id, i.e. the e�ective
time interval for unknown departures is Ii ∩ Id.
That is, when the constant delay parameter d is known (or its distribution), we
can utilize it to obtain a better understanding of N in each server. Otherwise
the procedure works similarly as before.
Let ei denote the length of the subset of time interval (ti−1, ti) during which
jobs may have departed without our knowledge, ei := |Ii ∩ Id|. We have three
cases for Ii ∩ Id,  (ti−1, ti) when t− d ≤ ti−1,

(t− d, ti)when ti−1 < t− d ≤ ti,
∅, when ti < t− d.

(1)

Now it is easy to deduce that

ei = min{ti − ti−1, max{0, ti − t+ d}}.

The maximum number of departures, denoted byDi, during time interval (ti−1, ti)
has a Poisson distribution with parameter µei, and the corresponding update rule
for determining Ni is

Ni = (Ni−1 −Di)
+
+ ai,

where N0 = n0, and ai = 1 if a job arrives at time ti and otherwise ai = 0.
Including the knowledge about the �xed delay on ACKs thus leads to a minor
modi�cation to Algorithm 1. In FindN, the calls to Update must be modi�ed so
that the second parameter is ei.

10 Hyytiä and Righter

RR

JSQ

JSQ0

JSQe

JSQed

0 1 2 3 4

1.6

1.8

2.0

2.2

2.4

2.6

Delay in ACKs

M
e
a
n

R
e
s
p
o
n
s
e

T
im

e

Fig. 7. Simulation results with 4 identical servers as a function of ACK delay d.

P5 Delay-aware JSQed: Taking into account the known �xed delay d when
determining the server-speci�c state distribution, and then computing the
expected number in servers leads to delay-aware JSQ.

4.1 Numerical Example 3

Let us next consider the same setting as in the last example, i.e., four identical
servers and the constant delay d of the ACKs is varied from zero to 4. Figure 7
depicts the numerical results, including for the new policy JSQed. We can observe
that JSQed yields the shortest mean response time among all policies that can
be realized (i.e., excluding the basic JSQ that violates our asssumptions on
the available information). It thus gives the best estimate for to the price of
information delay in our scenario.
Figure 6(c) depicts the error in JSQed's estimate on the server state. We can
see that it is based on the unbiased estimate (the mean is correct), however, the
standard deviation is non-negligible.

4.2 Numerical Example 4: Dependency on Load

Next we study how the o�ered load ρ a�ects the performance. We �x the delay in
acknowledgements to d = 2 and vary the arrival rate λ. Otherwise the example
system is kept the same, i.e., we have 4 identical servers with µi = 1.
Numerical results are depicted in Figure 8. The x-axis corresponds to the o�ered
load, ρ = λ/

∑
j µj , and the y-axis to the mean response time scaled by (1− ρ).

Hence, with a single fast server with µ′ =
∑
j µj , one would obtain the mean

response time of E[T ′] = 0.25. This is depicted with the dashed constant line in
the �gure.
It is interesting to note that RR can be clearly better than the (naïve) JSQ0. In
our example case, this happens when the o�ered load is moderate.

Dynamic Routing Problems with Delayed Information 11

RR

JSQ

JSQ0/e

JSQed

Combined Server

0.0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

Offered load ρ

(1
-
ρ
)

E
[

T
]

Fig. 8.Mean response time as a function of the o�ered load ρ with four identical servers
and ACK delay of d = 2.

5 Heterogeneous Servers

Often servers are not identical. For example, the server pool may comprise two
types of hardware due to an upgrade. In this section, we generalize the heuristic
policies to the case of heterogenenous service rates.
We adapt the previously discussed dispatching policies accordingly. Instead of
RR, we can use the so-called generalized Round-Robin (GRR) [1]. With GRR,
faster servers appear more frequently in the number sequence de�ning the as-
signment pattern.
Similarly, instead of JSQ we consider the shortest-expected-delay (SED) [14],

αSED := argmin
j

nj + 1

µj
.

where µj is the service rate of server j, and nj is the current number in server
j. Given the exact state information is not available, we resort to estimating
the mean E[Nj] the same way as before. Similarly as with JSQ, the subscript
indicates how E[Nj] is estimated (based on delayed acknowledgements).

5.1 Numerical Example 5

As an example scenario, suppose we have three servers with service rates µ =
{2, 1, 1}, so that server 1 is twice as fast as the other two servers. As in our earlier
numerical examples, jobs arrive according to Poisson process. The propagation
delay of the acknowledgements is constant, either small d = 0.5, or large d = 3.
As mentioned, the standard round robin sequence would be ill-�tted given one
server is signi�cantly faster than other, and we will resort to the generalized
Round-Robin (GRR). In our example case the optimal sequence is trivially
1, 2, 1, 3, 1, 2,

12 Hyytiä and Righter

SED

SEDe

JSQ0

SED0

SEDed

GRR

0.0 0.2 0.4 0.6 0.8
1.00

1.05

1.10

1.15

1.20

1.25

1.30

Offered load ρ

E
[

T
]
/

E
[
T

S
E

D
]

SED

SED0

SEDe

JSQ0

SEDed

G
R
R

0.0 0.2 0.4 0.6 0.8
1.0

1.1

1.2

1.3

1.4

1.5

1.6

Offered load ρ

E
[

T
]
/

E
[
T

S
E

D
]

Fig. 9.Mean response time as a function of the o�ered load ρ with three heterogeneous
servers and ACK delay of d = 0.5 and d = 3.

Numerical results are depicted in Figure 9. The y-axis corresponds to the mean
response time relative to SED with perfect state information. We also included
the (naïve) JSQ, resolving ties in favor of the fast server, for comparison.
When the propagation delay of ACKs is small (left �gure), we can see that both
SED0 and SEDed work well, whereas SEDe and JSQ0 have similar performance.
GRR utilizes the slower servers unnecessarily, especially at low loads, and it is
no match to these dynamic policies.
However, when the propagation delay increases to d = 3 things change dramat-
ically. First, SEDed yields the shortest mean response time, followed by SEDe,
as expected. These are the policies that take into account the delay in acknowl-
edgements, and its role is now su�ciently large that even SEDe does a good job.
JSQ0 shows signi�cantly worse performance than SED policies. At the same
time, GRR starts to move up in the ranks. This is expected as GRR is insen-
sitive to delay in acknowledgements. In fact, it is also insensitive to delay from
dispatcher to server, should there be such.
To summarize, our numerical experiments suggest RR and its generalized version
(GRR) are good robust options when the state information available to the dis-
patcher is vague and/or noisy, especially when load is relatively high. Moreover,
false assumptions on the process describing the delivery of acknowledgements
can severely degrade the performance of the system when a JSQ- or SED-type
of policy is applied. With accurate modelling under the right assumptions, JSQ-
and SED-policies can work well even under uncertainties about the server states.
However, when delays are small, the standard JSQ and SED remain near-optimal
and should be favored for their simplicity.

6 Conclusions

In this paper, we considered elementary yet tractable models for dispatching
systems subject to varying information and (random) delays in servers' status
updates. Such settings arise, e.g., in large or real-time systems, where it is not
practical to query the state of each server for every job.

Dynamic Routing Problems with Delayed Information 13

The main contributions of this paper are:

1. We give computationally straightforward algorithms to determine distribu-
tions for the server states based on incomplete information. The arrival pro-
cess can be arbitrary, but exponential service times are assumed, which is a
reasonable assumption, e.g., with a large number of servers.

2. The (naïve) JSQ, referred to as JSQ0, turned out to be worse than RR in
some cases. This is due to the fact that its estimate on server states has
bias. In other words, before applying JSQ, one should ensure that the state
information is timely and accurate [11].

3. Moreover, we observed that it is also important to take into account the delay
pattern appropriately. Our �rst trial, JSQe turned out to have de�encies
especially when completed jobs are acknowledged and ACK delays are short.

4. Our delay-aware policy, JSQed, takes the delay structure appropriately into
account. In the example cases, its performance was better than with any
other comparable policy based on the same amount of information.

5. With heterogeneous servers, JSQ is often replaced by SED, which takes into
account the service rates. Similarly as with JSQ, SED can also be adapted
to the setting of uncertain state information. The numerical results suggest
similar observations; with a short delay the standard SED works well, but
as the delay increases it must be taken into account. SEDed turned out to
be superior across di�erent example scenarios.

6. Generalized round robin (GRR) is well-suited for heterogenerous servers. It
is a robust policy that works well when state information is vague or con-
tains unknown errors (e.g. wrong assumptions about the ACK propagation
delay processs). However, with su�ciently accurate state information even
the basic JSQ0 was better than GRR.

The dynamic decision making scenario studied in this paper can be approached in
the framework of partially observable MDPs. Similarly, one can develop �black-
box� machine learning models that can be expected to perform well after a
su�ciently long training period. However, these approaches are less insightful
on how the system works, and the learning phase in real operation can be dis-
ruptive when the operational parameters change. In contrast, our approach can
be immediately adapted to a new scenario, e.g., if the arrival rate Λ or the size of
the server pool changes. This also allows dynamic dimensioning of the server pool
without the long experiments that machine learning approaches would require.

References

1. Altman, E., Gaujal, B., Hordijk, A.: Balanced sequences and optimal routing. J.
ACM 47(4), 752�775 (Jul 2000)

2. Altman, E., Kofman, D., Yechiali, U.: Discrete time queues with delayed informa-
tion. Queueing Systems 19, 361�376 (1995)

3. Artiges, D.: Optimal routing into two heterogeneous information. In: Proceedings
of the 32nd Conference on Decision and Control. San Antonio, Texas (1993)

14 Hyytiä and Righter

4. Buzen, J.P., Chen, P.P.: Optimal load balancing in memory hierarchies. In: Pro-
ceedings of the 6th IFIP Congress. pp. 271�275. Stockholm, Sweden (Aug 1974)

5. Ephremides, A., Varaiya, P., Walrand, J.: A simple dynamic routing problem. IEEE
Transactions on Automatic Control 25(4), 690�693 (Aug 1980)

6. Haight, F.A.: Two queues in parallel. Biometrika 45(3-4), 401�410 (1958)
7. Lipschutz, D.: Open problem�load balancing using delayed information. Stochas-

tic Systems 9(3), 305�306 (2019)
8. Litvak, N., Yechiali, U.: Routing in queues with delayed information. Queueing

Systems 43, 147�165 (2003)
9. Liu, Z., Righter, R.: Optimal load balancing on distributed homogeneous unreliable

processors. Operations Research 46(4), 563�573 (1998)
10. Liu, Z., Towsley, D.: Optimality of the round-robin routing policy. Journal of Ap-

plied Probability 31(2), 466�475 (Jun 1994)
11. Mitzenmacher, M.: How useful is old information? IEEE Transactions on Parallel

and Distributed Systems 11(1), 6�20 (2000)
12. Novitzky, S., Pender, J., Rand, R.H., Wesson, E.: Nonlinear dynamics in queueing

theory: Determining the size of oscillations in queues with delay. SIAM Journal on
Applied Dynamical Systems 18(1), 279�311 (2019)

13. Pender, J., Rand, R., Wesson, E.: A stochastic analysis of queues with customer
choice and delayed information. Mathematics of Operations Research 45(3), 1104�
1126 (2020)

14. Selen, J., Adan, I., Kapodistria, S., van Leeuwaarden, J.: Steady-state analysis of
shortest expected delay routing. Queueing Systems 84(3), 309�354 (Dec 2016)

15. Whitt, W.: On the many-server �uid limit for a service system with routing based
on delayed information. Operation Research Letters 49, 316�319 (2021)

16. Winston, W.: Optimality of the shortest line discipline. Journal of Applied Prob-
ability 14, 181�189 (1977)

