
Performance Degradation in Parallel-Server Systems with
Shared Resources

Esa Hyytiä

University of Iceland

esa@hi.is

Rhonda Righter

University of California Berkeley

rrighter@ieor.berkeley.edu

ABSTRACT
Parallel server systems are ubiquitous. Multicore CPUs are in prac-

tically every personal device from mobile handsets to high-end

desktop PCs. At larger scale, data centers consist of a huge number

of physical servers often shared by multiple users (for economic

reasons). Moreover, the simultaneous users are typically unaware

of each other due to reasons that can be technical (cf. security &

privacy), practical (coordination layer would add complexity) and

business related (usage can be business sensitive information). This

results in server-side variability in terms of unpredictable response

times. We study means for tackling these challenges. In particular,

we consider a model where multiple users (dispatchers) route their

jobs to a pool of servers using different (dispatching) policies. The

goal is to determine how different policies interact: whether users’

decisions support each other, or if some decisions are simply coun-

terproductive. The lack of coordination is shown to increase, e.g.,

the mean response times, with two common and robust dispatching

policies: the static Size-Interval-Task Assignment (SITA) and the

dynamic Round-Robin (RR). We refer to this phenomenon as the

price of ignorance.

CCS CONCEPTS
•Mathematics of computing→ Queueing theory; • Informa-
tion systems→ Data centers.

KEYWORDS
job dispatching, coordination, parallel servers, Round-Robin, SITA

ACM Reference Format:
Esa Hyytiä and Rhonda Righter. 2020. Performance Degradation in Parallel-

Server Systems with Shared Resources. In 13th EAI International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS ’20), May
18–20, 2020, Tsukuba, Japan. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3388831.3388853

1 INTRODUCTION
We focus on large systems where multiple users share the same

computing resources for economic reasons. By user we mean a

general entity that generates computing jobs. It may correspond,

e.g., to a single person running a batch of Monte Carlo simulations,

or a company processing web page requests of their clients. Typical

examples are computer centers and data centers in general.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in 13th EAI International
Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS ’20), May
18–20, 2020, Tsukuba, Japan, https://doi.org/10.1145/3388831.3388853.

Jobs

Dispatchers

Servers

Figure 1: Multiple dispatching systems, unaware of each
other, utilizing the same pool of servers.

Recently, the server-side variability in processing times has been

acknowledged as one important performance factor [1]. This vari-

ability can be, e.g., due to other users sharing the same server (cf.

virtual machines), background traffic in network, data locality, etc.

These phenomena are hard to predict, and one practical solution

proposed is job replication [6, 7, 12]. However, the models studied,

e.g., in [5–7], do not explicitly model the source of server-side vari-

ability. In contrast, the model we consider in this paper, includes

this aspect explicitly in the form of competing dispatchers.
It turns out that systems with multiple dispatchers have received

far less attention than systems with a single dispatcher. This is

somewhat surprising as one main argument for static policies (i.e.,

policies that are independent of the state of the servers) is the

scalability in terms of parallel dispatchers. Recently, Doncel et al.

[2] study the static Size-Interval-Task Assignment (SITA) policies

for systems where coordination between the dispatchers is assumed.

In particular, it is assumed that each dispatcher is allocated its own

set of servers, and therefore no (stochastic) interactions are present.

In contrast, we consider the situation where dispatchers, unaware of

each other, share the same set of servers. We give exact closed-form

results that quantify the performance with SITA, for Round-Robin

(RR) we resort to simulation experiments and analysis in the heavy

traffic limit. Both policies reveal interesting and different behavior

as a function of the number of servers, the number of dispatchers

and the offered load.

2 MODEL AND PRELIMINARIES
The system depicted in Figure 1 consists of k dispatchers each

receiving jobs according to a Poisson process at rate λ′ = Λ/k . Job
sizes are i.i.d. and generally distributed random variables, Xi ∼ X .

The task of a dispatcher is to route each job immediately upon an

arrival to one of the servers. The server pool consists of n identical

first-come-first-served (FCFS) servers. The offered load is thus ρ =
ΛE[X]/n, which is assumed to be less than one for stability. The

notation is summarized in Table 1.

The basic performance metric is the mean waiting time. The key

dimension we explore in this paper is the performance degradation

https://doi.org/10.1145/3388831.3388853
https://doi.org/10.1145/3388831.3388853
https://doi.org/10.1145/3388831.3388853

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Hyytiä and Righter

Table 1: Notation:

n the number of servers

k the number of dispatchers

Λ the total job arrival rate to the system

λ′ the job arrival rate per dispatcher, λ′ = Λ/k
˜λ the (random) job arrival rate to a single server

X the (random) service time distribution

ρ the offered load per server, ρ = ΛE[X]/n

η(x) the nominal cumulative load, η(x) =
∫ x
0
t · f (t)dt

due to uncoordinated dispatching decisions, i.e., the price of igno-
rance. We assume that the dispatchers are completely unaware of

each other. There are no status updates or initial communication

prior to the start of operation. Moreover, we assume that no infor-

mation about the total number of dispatchers k is available to any

individual dispatcher, and the pool of servers is just an unordered

set. This may arise, e.g., in computing centers whenever multiple

parties submit their tasks concurrently independently of each other.

The random split (RND) assigns jobs at random and thus all

dispatchers make statistically the same decision. With SITA, the

decision depends on the size of the job and the dispatcher-specific

numbering of the servers. With RR, the decision depends on which

server the given dispatcher sent the previous job to. Thus, with

all three policies, the dispatching decision is independent of the

state of the servers, but with SITA and RR the destination of a

new job depends on the dispatcher handling it. It turns out that

the performance decreases as a function of k due to the lack of

coordination for these two policies. Quantifying the performance

deterioration (i.e., the price of ignorance) with SITA and RR is the

main contribution of this paper.

3 STATIC POLICIES
A dispatching policy is static if its decision is independent of past

decisions and the state of the queues. Consequently, these policies

scale extremely well as no communication is needed between the

dispatchers and servers, nor among the dispatchers. The downside

is that their performance is typically worse than that of an adequate

dynamic policy. First we recap the situation with a single dispatcher,

and then consider a system with multiple dispatchers.

3.1 Single Dispatcher – Warmup and Recap
Let us consider a system comprising a single dispatcher routing

jobs to n servers. Jobs arrive according to a Poisson process at rate

Λ and their sizes are i.i.d. random variables, denoted by X . The n
servers are identical and follow the FCFS queueing discipline. Given

the dispatcher employs a static policy, the system decomposes into

n independent M/G/1 queues, and the mean waiting time for any

fixed server is given by the Pollaczek-Khinchine (PK) formula,

E[W̃] =
˜λ E[X̃ 2]

2(1 − ρ̃)
=

ρ̃

2(1 − ρ̃)
×
E[X̃ 2]

E[X̃]
, (1)

where
˜λ, X̃ and ρ̃ = ˜λ E[X̃] denote the arrival rate, job size and

the offered load at the given server, which all depend on the static

policy splitting the Poisson stream of new jobs among the n servers.

Figure 2: Thresholds ξi with SITA for X ∼ Exp(µ) for
n = 2, 22, . . . , 26 servers. The upper curve corresponds to
x f(x) and

∫ ξi
ξi−1

x f (x)dx is equal to E[X]/n for all i.

Two popular static dispatching policies are the Bernoulli split

(RND) and the size-interval-task-assignment (SITA) [8].

Definition 3.1. Random Bernoulli split (RND) routes jobs in-
dependently at random according to probabilitiesp1, . . . ,pn , one for
each server, such that p1 + . . .+pn = 1. In general, the probabilities

can be dispatcher specific.

Definition 3.2. Size-interval-task-assignment (SITA) has n +
1 threshold parameters ξ0 < . . . < ξn that split the possible job

sizes into n disjoint intervals,

[ξ0, ξ1), [ξ1, ξ2), . . . , [ξn−1, ξn).

SITA routes a job to server i if its size belongs to the ith size-interval.
It is customary that ξ0 = 0 and ξn = ∞. With multiple dispatchers,

the size intervals can be dispatcher specific.

It is worth noting that SITA, with optimized thresholds (SITA-

opt), has been shown to be the optimal static policy for FCFS servers

with respect to the mean response time [4]. In this paper, however,

we focus on load balancing versions of RND and SITA. In our con-

text, this is a fair assumption as the dispatching policies are assumed

to be unaware of each other. Thus, as a “gentlemen’s agreement”,
they are expected to balance the load by utilizing all servers equally.

Moreover, we assume that the number of servers, n, is known, and
they are identical. Therefore, we will choose the parameters of

RND and SITA so that the load for each server is ρ = ΛE[X]/n.
That is, our RND uses pi = 1/n for all i . Similarly, SITA with equal

load has well-defined thresholds that depend solely on the job size

distribution.

Definition 3.3 (Nominal cumulative load). For (continuous) job
size distribution f (t), the nominal cumulative load is

η(x) ≜
∫ x

0

t · f (t)dt . (2)

Thus, limx→∞ η(x) = E[X]. Given η(x), the SITA thresholds for

n identical servers are obtained by solving for ξi from

η(ξi) =
i

n
E[X], i = 1, . . . , (n − 1).

As an example, with X ∼ Exp(µ), we have

η(x) = (1 − (1 + µx)e−µx)/µ,

from which SITA thresholds ξi can be easily determined. The re-

sulting thresholds are illustrated in Figure 2.

Performance Degradation in Parallel-Server Systems with Shared Resources VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

We call jobs that fall in the ith interval type i jobs. Letting Xi be
the job size of a type i job,

Xi = (X | ξi−1 ≤ X < ξi),

and letting bi be the probability a random job is a type i job, we
have bi E[Xi] = E[X]/n for all i . Note that the thresholds ξi , and
therefore also Xi and bi , are independent of ρ.

From (1), The mean waiting time with RND is given by,

E[W RND] =
ρ

2(1 − ρ)
×
E[X 2]

E[X]
. (3)

Lemma 3.4. The mean waiting time with SITA is given by,

E[W SITA] =
ρ

2(1 − ρ)
×

n

E[X]

n∑
i=1

bisi , (4)

where

bi ≜
∫ ξi

ξi−1
f (x)dx, and si ≜

∫ ξi

ξi−1
x2 f (x)dx . (5)

Proof. The mean waiting time with SITA is,

E[W SITA] =

n∑
i=1

bi ·
ρ

2(1 − ρ)
·
E[X 2

i]

E[Xi]
,

and as bi E[Xi] = E[X]/n,

E[W SITA] =
ρ

2(1 − ρ)
×

n

E[X]

n∑
i=1

(bi)
2 · E[X 2

i].

Substituting si = bi E[X
2

i] yields (4). □

Remark 3.5. The relative performance improvement with SITA
over RND in terms of mean waiting time does not depend on Λ,

E[W SITA]

E[W RND]
= β(X ,n) ∀Λ, (6)

where,

β(X ,n) ≜
n

E[X 2]

n∑
i=1

bisi ,

is independent of the offered load ρ.

Proposition 3.6.

E[W SITA] < E[W RND]. (7)

Proof. From (6), we need to show that (for n ≥ 2)

n∑
i=1

bisi <
E[X 2]

n
=

n∑
i=1

1

n
si .

Because ξi is strictly increasing in i , so is E[Xi]. As bi E[Xi] =
E[X]/n for all i , we must have bi strictly decreasing in i . Thus it
is sufficient to show that si is strictly increasing in i . This follows
from

ξi−1

∫ ξi

ξi−1
x f (x)dx <

∫ ξi

ξi−1
x2 f (x)dx < ξi

∫ ξi

ξi−1
x f (x)dx,

yielding

ξi−1
E[X]

n
< si < ξi

E[X]

n
, (8)

which implies that si is strictly increasing in i . □

The following corollary shows that the performance with SITA

improves when the size of the system is scaled.

Corollary 3.7. Consider dispatching systems with n and mn
servers,m = 2, 3, . . . , both routing jobs according to SITA under the
same load ρ. The mean waiting time is lower in the larger system.

Proposition 3.8. The mean waiting time for single-dispatcher
systems with SITA in the limit as n → ∞ is

E[W SITA] →
ρ E[X]

2(1 − ρ)
, as n → ∞. (9)

Proof. Let us first assume that X is supported on a bounded

interval (u,v), and the pdf f (x) is a (piecewise) continuous function.
Then η(v) = E[X], and we can set ξ0 = u and ξn = v so that

the lengths of all size-intervals, ∆i = ξi − ξi−1, tend to zero as n
increases. The key observation is that in the limit the variance at

each server goes to 0, so E[X 2] → E[X]2, which yields the result.

More precisely, the mean waiting time with SITA is (4),

E[W] =
ρ

2(1 − ρ)E[X]
× n

n∑
i=1

bisi . (10)

For large n, biξi → E[X]/n, and si → ξ 2i f (ξi)∆i , so that∑
i
nbisi = E[X]

∑
i
ξi f (ξi)∆i → E[X]2.

Substituting the above into (10) yields (9).

Consider next the case where X is a continuous random variable

with a (piecewise) continuous pdf f (x) and unbounded support so

that

P{X > x} > 0, ∀x > 0. (11)

Moreover, we assume that E[X] and E[X 2] are finite.

The expression (10) for the mean waiting time can be written as,

E[W] =
ρ

2(1 − ρ)E[X]
×

[
n
n−1∑
i=1

bisi + nbnsn

]
.

The sum includes a finite interval [ξ0, ξn−1), which will be covered

by arbitrarily small intervals as n increases. In contrast, given (11),

we have ξn = ∞, so we need to show that nbnsn → 0 as n → 0.

According to the load balancing, biE[Xi] = E[X]/n, and we have

nbnsn =
E[X]

bn E[Xn]
· bnsn =

∫ ξn
ξn−1

f (x)dx∫ ξn
ξn−1

x f (x)dx
· sn E[X].

As

∫ ξn
ξn−1

x f (x)dx > ξn−1
∫ ξn
ξn−1

f (x)dx , we obtain

nbnsn <
sn E[X]

ξn−1
<

E[X 2]E[X]

ξn−1
.

Given the support of X is unbounded, it follows that ξn−1 → ∞ as

n → ∞, and therefore nbnsn → 0 as n → ∞. □

It is straightforward to show that this result holds also if f (x) = 0

in some sub-interval(s). Recall that themeanwaiting timewith RND,

given by (3), holds for any n. It follows that

1 ≥
E[W SITA]

E[W RND]
≥

E[X]2

E[X 2]
,

where the equality on the left holds for n = 1, and on the right in

the limit when n → ∞.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Hyytiä and Righter

3.2 Multi-Dispatcher Systems
3.2.1 Two Dispatchers. Suppose first that the system comprises

two servers and two dispatchers, both routing an equal amount

of work using SITA (see Figure 1). Consequently, both dispatchers

either send their short jobs (long jobs) to the same server, or the

opposite servers. If the dispatchers manage to agree on the same

server for short (and long) jobs, the system reduces to a single-

dispatcher system with SITA. In contrast, if the server assignment

is the opposite, both servers receive both short and long jobs, and

the system reduces to a system with RND. Given the dispatchers

assign servers at random, the chances that the dispatchers order the

servers the same way is 0.5. Hence, the expected gain from using

SITA, without any coordination when configuring SITA for both

dispatchers, is 50% of that achieved with a single dispatcher.

3.2.2 General Case. Suppose our system comprises k independent

dispatchers routing jobs ton servers, as illustrated in Figure 1. Given
the dispatchers have static dispatching policies, the system again

decomposes into n independent parallel FCFS M/G/1 queues and

the PK mean value results can be utilized.

Let us next assume that all dispatchers use SITA. The size inter-

vals are thus chosen identically, each constituting a type i flow with

parameters (λi ,Xi), where i = 1, . . . ,n, and λi = biΛ/k is the rate

of type i jobs per dispatcher. Dispatchers operate independently
and assign the n job size intervals randomly to the n servers.

Let us consider an arbitrary server and let Zi denote the number

of dispatchers that route type i jobs to this server. We refer to

the vector Z = (Z1, . . . ,Zn) as the configuration, even though it

describes only the flow of jobs routed to a single server. Then Z
obeys the multinomial distribution with constraintZ1+ . . . ,Zn = k .
Moreover, since the size intervals (the order of servers) are chosen

uniformly, we have Zi ∼ Bin(k,p), where p = 1/n.

Proposition 3.9. The mean waiting time in a multi-dispatcher
system with k uncoordinated SITA dispatchers sharing n identical
servers is given by

E[W SITA] =
ρ

2(1−ρ)E[X]

[
k − 1

k
E[X 2] +

n

k

n∑
i=1

(bi)
2
E[X 2

i]

]
, (12)

where the bi and Xi depend on n, but not on k .

Proof. As all servers behave statistically the same way, we can

focus on, say, server 1. The random configuration Z induces an

arrival rate
˜λ and job size distribution X̃ for the given server. The

mean number of waiting jobs in this server is

E[Ñq] =
1

2(1 − ρ)
· E[˜λ2 X̃ 2], (13)

where the fact that the load remains constant under every configu-

ration is utilized. Conditioning on Z gives

(˜λ | Z) =
∑
i
λiZi .

Similarly, for the second moment of X̃ we have,

E[X̃ 2 | Z] =
∑
i λiZi E[X

2

i]

(˜λ | Z)
.

The conditional expectation, needed for the PK formula (13), is

E[˜λ2 X̃ 2 | Z] =

(n∑
i=1

λiZi

)
·

(n∑
i=1

λiZi E[X
2

i]

)
,

=

n∑
i=1

(λi)
2
E[X 2

i]Z
2

i +
∑
i,j

λiλj E[X
2

j]ZiZ j . (14)

Given that Z obeys the multinomial distribution, we have

E[Zi] = k ·
1

n
,

V[Zi] = k ·
1

n
·
n − 1

n
,

Cov(Zi ,Z j) = −k ·
1

n2
, (i , j).

Thus,

E[(Zi)
2] =

k(k + n − 1)

n2
,

E[ZiZ j] =
k(k − 1)

n2
. (i , j).

Substituting these and the relation λi = biΛ/k into (14) yields

E[˜λ2 X̃ 2] =
Λ2

n2k

[
(k + n − 1)

∑
i
(bi)

2
E[X 2

i]

+ (k − 1)
∑
i,j

bibj E[X
2

j]

]
.

For the latter sum, we have∑
i,j

bibj E[X
2

j] =

n∑
i=1

biE[X
2

i]
∑
j :j,i

bj =
∑
i
(1 − bi)biE[X

2

i].

Therefore,

E[˜λ2 X̃ 2] =
Λ2

n2k

[
n
∑
i
(bi)

2
E[X 2

i] + (k − 1)
∑
i
bi E[X

2

i]

]
,

=
Λ2

n2k

[
n
∑
i
(bi)

2
E[X 2

i] + (k − 1)E[X 2]

]
. (15)

According to Little’s result,

E[W SITA] =
n E[Ñq]

Λ
=

n

2(1 − ρ)Λ
· E[˜λ2 X̃ 2],

and substituting (15) then gives

E[W SITA] =
Λ

2(1 − ρ)n

[
n

k

∑
i
(bi)

2
E[X 2

i] +
k − 1

k
E[X 2]

]
,

which yields (12) as ρ = ΛE[X]/n. □

Note that with k = 1, (12) reduces to (4). Proposition 3.9 has

several important corollaries especially for larger systems. First,

comparing the expressions (12) (for SITA) and (3) (for RND) reveals

the following compact relationship that generalizes the result of

Remark 3.5 to systems with k > 1 dispatchers:

Corollary 3.10. The mean waiting time in a multi-dispatcher
system with k SITA dispatchers and n servers is given by

E[W SITA]= E[W RND]
(
1 −

rn
k

)
, (16)

Performance Degradation in Parallel-Server Systems with Shared Resources VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

where rn is a load independent factor that depends solely on n and X ,

rn ≜ 1 − β(X ,n) = 1 −
n

E[X 2]

n∑
i=1

(bi)
2
E[X 2

i],

and E[W RND] is given by (3).

The next corollary is an immediate consequence of Corollary 3.10,

for systems with a large number of dispatchers, k ≫ 1:

Corollary 3.11 (Many dispatchers limit). For any fixed load
ρ < 1, when the number of servers n is kept constant, E[W SITA] is
increasing in k and when the number of dispatchers tends to infinity,

E[W SITA] → E[W RND] as k → ∞.

Remark 3.12. With coordination the k dispatchers would act as a
single dispatcher, with the mean waiting time given by (4). This gives
the best-case performance with uncoordinated SITA dispatchers.

Let us next consider the many server limit n → ∞, thus general-

izing Proposition 3.8 for k ≥ 1 dispatchers.

Corollary 3.13 (Many servers limit). For any fixed load ρ < 1,
when the number of dispatchers k is kept constant while the number
of servers n tends to infinity, we have

E[W SITA] →
ρ

2(1 − ρ)E[X]

[
E[X 2] −

V[X]

k

]
, as n → ∞. (17)

Proof. With SITA, it holds that E[Xi]bi = E[X]/n. Arguing as
in Proposition 3.8, we have E[X 2

i] = E[Xi]
2
in the limit n → ∞,

i.e. the variability in each size-interval eventually vanishes (given

E[X 2] is finite). Thus, the term (bi)
2
E[X 2

i] in the latter sum in (12)

converges to E[X]2/n2, and

n

k

n∑
i=1

(bi)
2
E[X 2

i] →
E[X]2

k
.

Therefore, from (12) we can deduce that

E[W SITA] →
ρ

2(1 − ρ)E[X]

[
(k − 1)E[X 2] + E[X]2

k

]
, as n → ∞,

which yields (17). □

Remark 3.14. Comparing (16) and (17) reveals that

lim

n→∞
rn =

V[X]

E[X 2]
=

c2v
c2v + 1

, (18)

where c2v denotes the squared coefficient of variation of the job sizes.

These corollaries imply that systems with multiple SITA dis-

patchers, unaware of each other, scale well as a function of the

number of servers n, whereas the performance quickly deteriorates

with increasing number of dispatchers, k , as quantified by (16).

One performance metric characterizing the increase is the (abso-

lute) increase in the mean waiting time,

∆ ≜ E[W | uncoordinated] − E[W | coordinated].

With SITA,

∆SITA = E[W RND] · rn · (1 − 1/k),

where the first factor depends on the system parameters (base level

performance), the second is a function of X and the number of

servers n, and the third depends only on the number of dispatchers

Table 2: Performance degradation with SITA due to multi-
ple uncoordinated dispatchers. Coefficients rn in the limit
n → ∞ are obtained from (18) : 1/4, 1/2 and 5/6.

E[W SITA]/E[W RND]

n U(0, 2) Exp(1) Weibull(1/2, 1/2)

n = 1 1 1 1

n = 2 1 − 0.121/k 1 − 0.330/k 1 − 0.632/k
n = 3 1 − 0.163/k 1 − 0.399/k 1 − 0.722/k
n = 4 1 − 0.185/k 1 − 0.429/k 1 − 0.758/k
n = 5 1 − 0.198/k 1 − 0.446/k 1 − 0.777/k
n = 6 1 − 0.206/k 1 − 0.456/k 1 − 0.788/k
n = 7 1 − 0.212/k 1 − 0.464/k 1 − 0.796/k
n = 8 1 − 0.217/k 1 − 0.469/k 1 − 0.802/k
n = 9 1 − 0.221/k 1 − 0.473/k 1 − 0.806/k
n = 10 1 − 0.224/k 1 − 0.476/k 1 − 0.809/k
...

...

n = ∞ 1 − 0.250/k 1 − 0.500/k 1 − 0.833/k

k . However, instead of absolute increase, one is often interested in

the proportional increase (which is a dimensionless quantity):

Definition 3.15 (Price of ignorance). Let us define the price of

ignorance for a dispatching policy α as the ratio of the meanwaiting

times for that policy without coordination and with it,

γ ≜
E[W | uncoordinated]

E[W | coordinated]
.

Corollary 3.16 (Price of ignorance with SITA). With SITA,
the price of ignorance is

γSITA =
1 − rn/k

1 − rn
,

which tends to (1 − rn)
−1 at the many dispatcher limit k → ∞.

Remark 3.17. Note that the price of ignorance for RND is 1, i.e.,
(lack of) coordination has no effect. Moreover, from (3.10), the price
of using RND relative to SITA is

E[W RND]

E[W SITA]
= 1 − rn/k .

Example 3.18. Expressions for the (scaled) mean waiting time
with k SITA dispatchers and n shared servers are given in Table 2
for X ∼ Exp(1), X ∼ U(0, 2) and X ∼ Weibull(1/2, 1/2). Note that
n = 1 corresponds to the performance relative to RND. We observe that
the marginal gain from adding one more server quickly diminishes.
Moreover, from (16) we can deduce that, e.g., with X ∼ Exp(1), k ≥ 5

implies that the performance with SITA is within 10% of that with
RND no matter how large n is. That is, benefits from applying SITA
vanish quickly when k increases a bit, which discourages its use in
multi-user environments!

4 ROUND-ROBIN POLICY
In this section, we revisit the popular Round-Robin (RR) routing pol-

icy, where dispatchers assign jobs sequentially to the servers. RR is

known to be optimal in several settings, where limited information

is available, see, e.g., [3, 10, 11]. Implementation-wise, as with static

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Hyytiä and Righter

policies, RR scales extremely well in the numbers of servers and

dispatchers, as only a dispatcher-specific local state information is

needed for routing decisions (i.e., the server the previous job was

routed to). Formally, RR is defined as follows:

Definition 4.1. The Round-Robin (RR) routing policy assigns

jobs sequentially ton servers, 1, 2, . . . ,n, 1, 2, Inmulti-dispatcher

systems, each dispatcher follows its own phase.

The interesting aspect in our context is that in the presence

of multiple RR dispatchers, their relative phases vary constantly

because the arrival times are random. Consequently, this affects

the performance of the system and our goal in this section is to

quantify the performance degradation in this case.

4.1 Simulation Experiments with Round-Robin
Unfortunately systems with multiple RR dispatchers are difficult

to analyze, and thus we resort to simulation experiments. Figure 3

depicts simulation results with RR for n = 2, 4, 8 servers. In each

case, we vary the number of dispatchers k = 1, 2, 4, 8, . . . , 128. Each

sample is based on a simulation run consisting of about 100M jobs.

The y-axis corresponds to the relative mean waiting time (i.e., the

price of ignorance, Def. 3.15)

γRR =
E[W RR]

E[W RR | k = 1]
,

and the x-axis is the offered load ρ. The service times are exponen-

tially distributed, X ∼ Exp(1). For comparison, the performance

with RND is also shown.

In general, introducing multiple RR-dispatchers degrades the

mean performance. We can make two interesting observations:

(i) For any finite ρ < 1, the performance with k RR-dispatchers

converges to that of RND when k → ∞. This is the same observa-

tion as we made with multiple SITA-dispatchers. (ii) In contrast,

as the offered load ρ tends to 1, i.e., in the heavy-traffic limit, all

curves corresponding to RR with different numbers of dispatchers

k converge to the same point as with one dispatcher! This suggests

that no matter how large k is, RR still introduces some order in the

system that is extremely valuable under heavy load. Note that RND

has a significantly worse performance in this limit.

Thus, SITA and RR behave quite differently when it comes to

multiple dispatchers. With SITA, the performance loss is indepen-

dent of ρ, but increases as a function of k until it is equal to that of

RND. RR also suffers from multiple dispatchers, especially under

low load, but at a varying degree depending on the offered load. In

particular, at the heavy traffic limit the price of ignorance vanishes

and k RR dispatchers, unaware of each other, still work seamlessly

together.

4.2 Convergence in the Heavy-traffic Limit
This peculiar behavior that a system with multiple RR-dispatchers

and a system with a single (centralized) RR-dispatcher become

equivalent (in terms of the mean waiting time) can be explained

by sample path arguments. Let us refer to the single dispatcher

system as System A and to the multi-dispatcher system as System

B. Suppose both systems receive the same arrival pattern, which

System B splits at random to its k dispatchers. We refer to time

periods when all servers are busy as busy periods, and let T denote

length of a busy period. As ρ → 1, the queue lengths in both

systems start to increase rapidly. The largest contributions to the

mean waiting time are incurred during long busy periods, during

which a large number of jobs are routed to n servers.

Let us considerm consecutive arrivals and let random variable

Cm denote the number of jobs the dispatcher(s) assign to Server

1. Note that with RND and SITA, Cm has no other bounds than

0 ≤ Cm ≤ m, i.e., the support of Cm grows linearly as a function

of m. In fact, Cm obeys a binomial distribution, Cm ∼ Bin(p,m),

where p is the probability of routing a job to Server 1 (with RND,

p = 1/n), and the variance V[Cm] =mp(1 − p) grows linearly as a

function ofm.

With RR, the support of Cm is much smaller, and in particular,

bounded, and so is the variance of Cm .

Lemma 4.2. The number of jobs routed to Server 1 with k dispatch-
ers is bounded:⌊

m − (n − 1)(k − 1)

n

⌋
≤ C

(k)
m ≤

⌈
m + (n − 1)(k − 1)

n

⌉
. (19)

In the case of a single RR dispatcher, the bounds reduce to⌊m
n

⌋
≤ C

(1)
m ≤

⌈m
n

⌉
. (20)

Proof. As (20) follows directly from (19), we can focus on the

case of k dispatchers and (19). For the lower bound, the slowest

possible progress forC
(k)
m is obtained with a pattern where the first

k(n − 1) jobs are routed elsewhere before Server 1 receives its first

job. After that, every nth job is routed to Server 1, yielding⌈
m − k(n − 1)

n

⌉
≤ C

(k)
m ,

which reduces to ⌊
m − (n − 1)(k − 1)

n

⌋
≤ C

(k)
m .

The upper bound can be deduced similarly. The fastest possible

progress for C
(k)
m is attained with a pattern where the first k jobs

are all routed to Server 1, and after that every nth job, yielding

C
(k)
m ≤ k +

⌊
m − k

n

⌋
,

which is equivalent to

C
(k)
m ≤

⌈
m + (n − 1)(k − 1)

n

⌉
.

□

Lemma 4.3. With k RR dispatchers, the variance ofC(k)
m is bounded,

V[C
(k)
m] < k2.

Proof. Relaxing the bound (19) a bit, we can write

m

n
− k < C

(k)
m <

m

n
+ k,

and as the mean is within the same interval of length 2k , we have

V[C
(k)
m] ≤ k2.

□

Performance Degradation in Parallel-Server Systems with Shared Resources VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

Two servers Four servers Eight servers

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.2 0.4 0.6 0.8 1

1 dispatcher

2 dispatchers

4 dispatchers

RND

E
[
W

R
R

]
 /
 E

[
W

R
R

 |
 k

=
1
]

Offered load ρ

8 dispatchers

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

1 dispatcher

2 dispatchers

4 dispatchers

8 dispatchers

RND

E
[
W

R
R

]
 /
 E

[
W

R
R

 |
 k

=
1
]

Offered load ρ

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

1 dispatcher

2 dispatchers

4 dispatchers

8 dispatchers

128 dispatchers

RND

E
[
W

R
R

]
 /
 E

[
W

R
R

 |
 k

=
1
]

Offered load ρ

Figure 3: Simulation results with n ∈ {2, 4, 8} servers and k ∈ {1, 2, 4, 8, . . . , 128} dispatchers with RR. For every ρ < 1, the per-
formance deteriorates to that of RND as k increases. However, in the heavy traffic limit, the price of ignorance vanishes.

To
ta
lo

cc
up

at
io
n

time ttime T when all n servers busy

Figure 4: Illustration of a long busy period with RR.

Thus, even though multiple RR dispatchers introduce some ran-

domness in a short timescale, at a longer timescale, “exactly” every

nth job will get assigned to Server 1 (and similarly to any other

server). This is the sole reason why the performance of the two

systems converges in the heavy traffic limit, where all (relevant)

busy periods are (very) long.

Proposition 4.4. The mean waiting time in a system with k RR
dispatchers becomes equal to the mean waiting time with a single RR
dispatcher in the heavy traffic limit where ρ → 1.

Proof. In the heavy-traffic regime, the main contribution to

the mean waiting time is incurred during the long busy periods.

Suppose that during such a busy period each dispatcher in System

B routes many more than n jobs, so that in total N ≫ kn jobs are

routed to the n servers. At the same time, the single dispatcher of

System A routes basically the same N jobs to the n servers (just in a

slightly different order in short timescale). According to the bound

(19), there is very little room to wiggle and in any longer timescale,

all servers receive the same number of jobs in both systems. As the

jobs routed to different servers are statistically identical with RR,

the total number of jobs in the two systems, on average, follow the

same pattern. That is, referring to Figure 4, apart from the initial

and final “transient” at the start and at the end of the busy period,

which become negligible in the heavy traffic limit, the two systems

behave essentially the same way in terms of the total number of

jobs in the system. Thus, according to Little’s law, the mean waiting

times become equal as ρ → 1. □

Corollary 4.5. The price of ignorance with Round-Robin vanishes
in the heavy-traffic limit where ρ → 1.

M/G/1
Erl/G/1

ρ

n

Erl/
G/1 heavy-traffic

regime

k

k×D/G/1

M/G/1

Figure 5: The “Round-Robin cube” illustrates the multi-
dispatcher Round-Robin system at different limits.

Considering the limit as n → ∞, we have that dispatchers route

jobs at practically constant time intervals to each server (phases be-

tween the dispatchers vary at much slower time scale), yielding the

k×D/G/1 system. Moreover, the k×D/G/1 system is upper bounded

by the D/G/1 queue with k-sized batch arrivals, yielding a bound

for the price of ignorance in this limit.

The cube in Figure 5 summarizes the behavior of the multi-

dispatcher Round-robin system in the different limits.

4.3 Light traffic
In contrast to the heavy-traffic limit, in light traffic the price of

ignorance can be arbitrarily large. The mean waiting time with a

single RR dispatcher in the light traffic regime (when ρ ≈ 0) is [9],

E[W RR | k = 1] ≈ (nρ)n ·
1

µ
.

With multiple dispatchers, the situation becomes worse and it is

straightforward to show that

E[W RR | k > 1] ≈ ρ
k − 1

k
·
1

µ
, ∀ n > 1.

Consequently, in light traffic the price of ignorance is

γRR ≈
k − 1

nnρn−1k
, n,k > 1,

which tends to infinity as ρ → 0.

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan Hyytiä and Righter

Two servers Four servers Eight servers

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

2 dispatchers

4 dispatchers

8 dispatchers

128 dispatchers

E
[
W

S
IT

A
]
 /
 E

[
W

R
R

]

Offered load ρ

1
 d

isp
a
tch

e
r

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

2 dispatchers

4 dispatchers

8 dispatchers

128 dispatchers

E
[
W

S
IT

A
]
 /
 E

[
W

R
R

]

Offered load ρ

1 dispatcher

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

1 dispatcher

2 dispatchers

4 dispatchers

8 dispatchers

128 dispatchersE
[
W

S
IT

A
]
 /
 E

[
W

R
R

]

Offered load ρ

Figure 6: Simulation results withn ∈ {2, 4, 8} servers and k ∈ {1, 2, 4, 8, 128} dispatchers with RR and SITA.With k > 1 dispatch-
ers, the performance with SITA is worse than with RR.

4.4 Comparison between RR and SITA
Figure 6 illustrates the performance ratio of SITA to RR with n ∈

{2, 4, 8} servers, k ∈ {1, 2, 4, 8} dispatchers and exponential service

times. First we can observe that with a single dispatcher, the static

SITA policy outperforms RR when the load is sufficiently high.

Intuitively, at high load the variability in service times affects per-

formance more than the variability in inter-arrival times. However,

with k ≥ 2, RR in consistently better than SITA. The difference is

small with n = 2 servers, but tends to increase as a function of n.
From (12), we can deduce that the mean waiting time with SITA

in light traffic behaves linearly,

E[W SITA] ≈
ρ

2k E[X]

(
(k − 1)E[X 2] + n

∑
i
(bi)

2
E[X 2

i]

)
,

and consequently, with k > 1 and X ∼ Exp(µ),

E[W SITA]

E[W RR]
≈ 1 +

nµ2

2(k − 1)

∑
i
(bi)

2
E[X 2

i].

That is, the ratio of the mean waiting times in the light traffic limit

is 1+д(n,X)/(k − 1), where the SITA-specific factor д(n,X) is inde-

pendent of k . This dependence of the overall relative performance

on k can be observed also from the simulation results.

5 CONCLUSIONS
Large computing systems often have multiple users operating their

own dispatchers independently of each other (cf. cloud computing

and virtual machines); this is one source of server-side variability.

The assumed lack of coordination can lead to a performance degra-

dation, a phenomenon we refer to as the price of ignorance. Our
results show that: (i) The celebrated static policy SITA shows signs

of weaknesses if dispatching policies are not coordinated. We give

exact closed-form results and show that the performance without

any coordination becomes equal to that of RND as the number of

dispatchers increases (the many dispatchers limit). We also con-

sider the many servers limit, where the performance advantage of

SITA relative to RND is highest, and quantify the corresponding

performance loss as a function of the number of dispatchers k . (ii) A
similar pattern is observed with the Round-Robin policy, i.e., as the

number of uncoordinated dispatchers increases, the performance

decreases. However, in heavy traffic even the small amount of coor-

dination provided by RR leads to a dramatic decrease in the mean

waiting time and the price of ignorance vanishes.

ACKNOWLEDGMENTS
Our paper benefited from the extra time given as a consequence of

the Corona virus.

REFERENCES
[1] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,

2 (Feb. 2013), 74–80.

[2] J. Doncel, S. Aalto, and U. Ayesta. 2019. Performance Degradation in Parallel-

Server Systems. IEEE/ACM Transactions on Networking 27, 02 (March 2019),

875–888.

[3] A. Ephremides, P. Varaiya, and J. Walrand. 1980. A simple dynamic routing

problem. IEEE Trans. Automat. Control 25, 4 (Aug. 1980), 690–693.
[4] Hanhua Feng, Vishal Misra, and Dan Rubenstein. 2005. Optimal state-free, size-

aware dispatching for heterogeneous M/G/-type systems. Performance Evaluation
62, 1-4 (2005), 475–492.

[5] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf. 2016. A Better Model for

Job Redundancy: Decoupling Server Slowdown and Job Size. In 2016 IEEE 24th
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). 1–10.

[6] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, Esa

Hyytiä, and Alan Scheller-Wolf. 2015. Reducing Latency via Redundant Requests:

Exact Analysis. ACM SIGMETRICS Performance Evaluation Review 43 (June 2015),

347–360. Issue 1. (ACM SIGMETRICS/Performance conference).

[7] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, Esa

Hyytiä, and Alan Scheller-Wolf. 2016. Queueing with Redundant Requests: Exact

Analysis. Queueing Systems 83 (2016), 227–259. Issue 3.
[8] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press.

[9] Esa Hyytiä and Rhonda Righter. 2019. Simulation and performance evaluation of

mission critical dispatching systems. Performance Evaluation 135 (Nov. 2019).

[10] Zhen Liu and Rhonda Righter. 1998. Optimal Load Balancing on Distributed

Homogeneous Unreliable Processors. Operations Research 46, 4 (1998), 563–573.

[11] Zhen Liu and Don Towsley. 1994. Optimality of the Round-Robin Routing Policy.

Journal of Applied Probability 31, 2 (June 1994), 466–475.

[12] Ashish Vulimiri, Philip Brighten Godfrey, Radhika Mittal, Justine Sherry, Sylvia

Ratnasamy, and Scott Shenker. 2013. Low Latency via Redundancy. In Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT’13) (Santa Barbara, California, USA). ACM, New York, NY, USA,

283–294.

	Abstract
	1 Introduction
	2 Model and Preliminaries
	3 Static Policies
	3.1 Single Dispatcher – Warmup and Recap
	3.2 Multi-Dispatcher Systems

	4 Round-Robin Policy
	4.1 Simulation Experiments with Round-Robin
	4.2 Convergence in the Heavy-traffic Limit
	4.3 Light traffic
	4.4 Comparison between RR and SITA

	5 Conclusions
	Acknowledgments
	References

