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ABSTRACT
Routing jobs to parallel servers is a common and important task in
today’s computer systems. Join-the-shortest-queue (JSQ) routing
minimizes the mean response time under rather general settings
as long as the servers are identical and service times are indepen-
dent and exponentially distributed. Apart from this, surprisingly
few optimality results exist, mainly due to the complexities arising
from the infinite state spaces. Indeed, it is difficult to analyze the
performance of any given routing policy. In this paper, we consider
an elementary job routing problem with heterogeneous servers and
general cost structures. By a novel approximation, we reduce the
state space to finite size, which enables us to estimate the mean per-
formance, and to determine (practically) optimal routing policies,
for a large class of cost structures. We demonstrate the approxi-
mation and its application to job routing policy optimization in
numerical examples.

CCS CONCEPTS
• Mathematics of computing → Queueing theory; • Theory of
computation → Markov decision processes; Routing and network
design problems; • Information systems → Data centers;
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1 INTRODUCTION
Routing jobs to parallel servers has been a long standing problem
class for queueing theory. The problem was first studied by Haight
already in 1958 [6]. Today, the same problem arises in many new
contexts. For example, when routing data traffic in the Internet,
alternative routes can be modelled as parallel servers. Similarly,
in cloud computing, each task needs to be assigned to one of the
available servers. In supercomputing, the time scales are longer
but the same fundamental question appears. Moreover, the hetero-
geneity of computing hardware is increasing both in large-scale
systems comprising several (thousands of) physical computers, as
well as within a single physical device (cf. GPUs vs. CPUs, or new
heterogeneous multi-core architectures such as those introduced
by ARM for mobile devices, where some cores have higher capacity
at the expense of higher energy consumption).
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In this paper, we study one of the most elementary routing prob-
lems, where both job inter-arrival times and service times are expo-
nentially distributed, so the state information is the number of jobs
at each server. For clarity, we consider systems with two heteroge-
neous parallel servers subject to a large class of cost structures. The
modelling approach itself generalizes straightforwardly to K > 2
servers at the cost of computational complexity. We discuss this
later. One of the most popular routing policies is Join-the-Shortest-
Queue (JSQ), which chooses the server with the fewest jobs. JSQ
has been shown to be optimal in some specific cases, but, especially
when the service rates are unequal, the exact analysis of the system
becomes surprisingly tedious. The key idea in our approach is to
accurately model the system where decisions matter the most, and
rely on appropriate approximation elsewhere.

The main contribution of this paper is a novel modification of
the system model with arbitrary cost structures, yielding a finite
state space, which in turn enables us (i) to estimate the mean per-
formance of arbitrary routing policies that are reasonable when the
system is congested (i.e., stabilize the system), and (ii) to determine
(near) optimal routing policies. Moreover, we obtain numerical evi-
dence on how quickly policy iteration converges for this type of
(modified) routing system. In particular, we observe that the first
policy iteration round tends to yield the largest improvement (a
phenomenon that has been assumed in numerous papers). These
new (practically) optimal policies serve also as benchmarks when
evaluating, e.g., simple (yet robust) policies such as JSQ.

1.1 Related Work
Routing problems have been studied actively during the last decades
in very different contexts. Three classes of results are relevant to
us: exact optimality results, approximate performance analysis, and
heuristics for approximate optimization.

In terms of optimality results, Winston [17] showed that JSQ
minimizes themean response time under exponential assumptions.1
JSQ has been further analyzed in [1, 7, 9, 15]. With heterogeneous
servers, the natural generalization is the Shortest-Expected-Delay
(SED) routing2 which chooses the server with the smallest expected
response time. Foschini [4] has shown that SED is asymptotically
optimal in the heavy traffic limit.

The most common performance measure is mean response time,
which is also non-trivial to compute in general for dynamic routing
policies. However, under exponential assumptions good approxima-
tions exist for JSQ. For example, Nelson and Philips [11] develop a
systematic approach based on the observation that the total number
of jobs in the system under JSQ tends to behave similarly to the
M/M/k system (with a shared queue). Then conditioning on the
total number of jobs, one still needs to estimate the length of the

1Poisson arrival process, and exponentially distributed service times.
2Sometimes referred to as the Shortest expected Delay Routing (SDR).
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Figure 1: Two server routing system.

shortest queue in order to find the steady state distribution. Our ap-
proach is based on the same observation, but we model the system
accurately for states with a small number of jobs where the routing
decision can be critical. See also [3]. Selen et al. [13] show that
the steady state distribution for two heterogeneous exponential
servers under SED can be expressed as a series of product forms
that can be determined recursively, enabling the computation of,
e.g., the mean response time, numerically. Analysis of queueing
systems tends to become harder when exponential assumptions are
relaxed, including systems with JSQ routing. Some results do exist,
e.g., Gupta et al. [5] consider JSQ with a general job size distribution
and processor sharing (PS).

The third class of results provide good routing heuristics that
outperform JSQ and SED for heterogeneous systems with different
cost structures. The basic routing problem is a classical Markov
decision process (MDP) with an infinite state space. If the state space
were finite, the optimal routing policy would be trivially available
(at least numerically) by carrying out policy or value iteration until
it converges. In our setting, one often resorts to heuristic routing
policies obtained by starting from a static policy, where the value
function can be computed, and then carrying out one policy iteration
round. This approach, referred to as first policy iteration (FPI), tends
to yield an efficient, though generally not optimal, policy. The FPI
approach has been utilized in numerous papers [2, 8, 10].

We also study the routing problem in the MDP framework. In-
stead of trying to solve the original problem directly, we first de-
velop an approximation for the system that has a finite number of
states. Our approach is similar to the successive lumping method
[14], where the state space is partioned in such a way that the
stationary distribution can be computed recursively (at least for
finite systems). In contrast to [14], we partition the state space into
two sets: the finite primary set includes states with few jobs where
routing decisions tend to be most critical, and the secondary infinite
set includes states with many jobs. Moreover, we first assume a
fixed routing such as JSQ or SED in the secondary set, and then
“compress” the infinite subspace to a single super state in a novel
manner allowing us to handle also heavy load scenarios accurately.
This approach enables us to analyze the system (with any load)
and to compute the optimal routing policy exactly for System D.
This in turn will provide an accurate and efficient heuristic for
the original problem. Our approach also yields a computationally
efficient procedure to estimate the mean performance (under any
load) with respect to a large class of cost structures and routing
policies (including JSQ and SED as special cases).

2 MODELLING
For clarity, we first assume K = 2 parallel servers and minimize
the mean response time. The developments generalize to arbitrary

Infinite state space Finite state space

System A System B System C

M
/M
/1

System D

(a) Original system (b) Fixed policy
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(c) State-space
collapse

(d) Combined
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Figure 2: Steps taken in the approximation.

cost functions and K > 2 servers, as will be discussed later in
Sections 2.5 and 2.6.

2.1 System A: Original model
The basic model we consider is illustrated in Figure 1 and is essen-
tially the same as in [2]:

(1) Jobs arrive according to Poisson process with rate λ and they
are routed immediately upon arrival to one of the available
servers.

(2) The system has two parallel servers (K = 2), where the
service time at server k is exponentially distributed with
parameter µk . In general, the servers are heterogeneous,
µ1 , µ2. Let µ = µ1 + µ2.

(3) We consider the number-aware setting, where in state n =
(i, j ) server 1 has i jobs and server 2 j jobs.

(4) Costs are incurred at rate ri j = i + j, which according to
Little’s result corresponds to the response time.

This model, referred to as System A, is a two dimensional MDP.
Even though it is elementary, finding the optimal routing policy is a
surprisingly difficult problem due to the infinite state space, except
when µ1 = µ2 and the objective is response time minimization
[17]. With heterogeneous servers and arbitrary cost functions, one
typically resorts to heuristics like JSQ/SED, or efficient routing
policies based on FPI or Gittin’s index [2].

2.2 System B: Fixed routing when many jobs
Next we will modify the system one step at a time, eventually
obtaining an MDP with a finite state space, as illustrated in Figure 2.
In the first step, we limit our focus to those states that we deem to
be the most important:
• Routing decisions tend to be most crucial when servers have
only few jobs, and therefore we consider optimizing deci-
sions only in a finite number of states near the origin,

A = {(i, j ) | i < n, j < m},

where (n,m) are free parameters (eventually defining the
size of the final system’s state space).
• Elsewhere, a fixed default policy α0 kicks in. Define S as the
union of A and its boundary B,

S = {(i, j ) | i ≤ n, j ≤ m} and B = S \ A.

We assume that α0 is such that departures from set S to
states outside it take place only through state (n,m), i.e., the
routing decisions along the boundary B lead towards (n,m).
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Returns to set S can happen anywhere on the boundary, as
illustrated in Figure 2(b).

Hence, at this point, we have simply fixed the routing decision
in states where we believe that SED (or a similar policy) is near
optimal (in the sense that use of it does not significantly reduce
the achievable mean performance). Heuristically, “when there is an
abundance of jobs, keep all servers busy”. This system with routing
policy fixed outside A is referred to as System B and is depicted in
Figure 2(b). We still have an infinite state space to deal with, even
though the routing action is free only in a finite number of states.

Past work analyzing JSQ (with identical servers) has made the
important observation that in higher states, when both i, j ≫ 0,
the system tends to stay near the diagonal and i ≈ j. In particular,
e.g., [11] assumes that the total number of jobs, N = N1 + N2, with
JSQ behaves approximately the same way as in the M/M/2 queue,
yielding an approximation for the steady state distribution of N .
In fact, this is exactly the so-called heavy-traffic approximation
[4]. We take advantage of the same phenomenon in this paper, but
allow any stable load, 0 < ρ < 1.

Example 1. Consider a system with two identical servers, µ1 =
µ2 = 1, and n = m. The arrival rate λ is varied from zero to a
heavily-loaded system with λ ≈ 2. Initially, the system is in state
(n + 1,n) corresponding to the first state after departing the n × n
box. Upon return, the longer queue has n jobs, and the shorter has
a random number X ∈ {0, . . . ,n}. Figure 3 illustrates the mean and
variability of X as a function of λ. We can see that the variability is
highest when λ → 0, which is easy to understand as arrivals will
push the state closer to the diagonal under JSQ. For λ → 0, it is easy
to show analytically that the difference between the shorter and
longer queue, denoted by D, has a truncated geometric distribution,

P{D = i} =

{
qi (1 − q), i = 0, . . . , (n − 1),
qn , i = n,

where q = 1/2, and as X = n − D, we have

E[X ] = n − 1 + 2−n ,

σ 2
X = 2 − 4−n − (1 + 2n)2−n ,

which rapidly converge to n − 1 and 2, respectively, for large n.
Hence, when n is larger, typically the state in S where the system
returns is one of (n,k ) or (k,n) for k = n,n − 1,n − 2,n − 3.

λ

policy

α

infinite

finite, n

µ1

finite,m

µ2

Figure 4: System C (with two servers).

2.3 System C: (Partial) state-space collapse
With the insight of Example 1 in mind, we next propose that instead
of analyzing the original model, we simplify our system by assuming
that state-space collapse occurs beyond S [4]. More specifically, we
define a new System C that agrees with System B for the states in
S, but for states in Sc , reduces to a standard M/M/1 queue with
arrival rate λ and service rate µ = µ1 + µ2. When a job arrives at
state (n,m) in System C, it starts an M/M/1 mini-busy period during
which we can think of jockeying3 being allowed, or that the two
servers collaborate and work on one job at a time until the state
(n,m) is reached again. Equivalently, System C corresponds to a
system where each server has a finite number of system places, and
if all those are full, then a job is held at the dispatcher, as illustrated
in Figure 4. The cost rate in the higher states is denoted by r̃i , where
i is the total number of jobs in the system, i.e., with the response
time metric,

r̃i = i .

In the general case, r̃i should resemble the corresponding exact
cost rates ri j near the diagonal, i ≈ j . Note that this approximation
tends to underestimate the costs during the mini busy period a bit
(depending on the cost structure).

The state space of System C is depicted in Figure 2(c). It is sig-
nificantly smaller than those of Systems A and B, but still infinite.

2.4 System D: Aggregated super state
Let us next consider SystemC from themoment it enters state (n,m)
until it moves to state (n − 1,m) or (n,m − 1). This corresponds to
a mini busy period in the M/M/1 queue initially having n +m jobs,
with mean duration

E[B] =
1/µ

1 − λ/µ
=

1
µ − λ

.

Moreover, the fraction of time there are n +m + i jobs, i = 0, 1, . . .,
is geometrically distributed,

π∗n+m+i = (1 − ρ)ρi ,

and therefore the mean cost rate rn∗ during the mini busy period
(where the job routing policy is “fixed”) is

rn∗ = (1 − ρ)
∞∑
i=0

r̃n+m+iρ
i = (1 − ρ)

∞∑
i=0

(n +m + i )ρi

= n +m +
ρ

1 − ρ
,

where the first two terms corresponds to the baseline of having
at least n +m jobs, and the third term adds the mean number of
additional jobs present during the mini busy period.
3Jockeying refers to moving jobs between queues after the initial assignment.
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Next we replace “the M/M/1 queue” in System C with an equiv-
alent super state n∗ = (n,m), which has mean duration E[B] and
incurs costs at rate rn∗ . This model is referred to as System D. The
corresponding transition and cost rates of the (modified) Markov
process for state n∗ are,

qn∗, (n−1,m) = µ1 (1 − ρ),
qn∗, (n,m−1) = µ2 (1 − ρ),

rn∗ = n +m +
ρ

1 − ρ
.

Elsewhere withinS, the transition rates are according to the service
rates µk and the arrival rate λ with the destination state defined
by the routing policy (e.g., JSQ). For the interior points, i.e. states
in A, whether to route a new job to Server 1 or Server 2 can be
chosen freely, while on the boundary B a suitable default policy
α0 is assumed. The resulting Markov (decision) process of System
D has (n + 1) (m + 1) states, as depicted in Figure 2(d), and well-
defined cost rates in each state. Once the routing policy is fixed, we
have a finite Markov process for which the steady state distribution
πi j can be easily computed. The mean cost rate is then given by
r =
∑
i, j πi jri j . Note that in terms of (expected) costs, Systems C

and D are equivalent.

2.5 General cost functions
Our approach allows for other performance metrics besides re-
sponse times. For example, we may incur a a unit cost if an arriving
job sees more than two jobs ahead of itself upon arrival (at the same
server) assuming FCFS service. This cost may better represent how
people tend to feel about queueing.

Let ai j denote the probability that an arriving job is routed to
server 1 in state (i, j ), so with probability 1 − ai j it is routed to
Server 2. Typically, ai j = 0 or ai j = 1, but this definition allows
also probabilistic routing in every state.4 Due to PASTA, instead of
incurring costs upon arrival, we can define the equivalent cost rate
in state (i, j ) as

ri j = λ
(
ai j1(i > 2) + (1 − ai j )1(j > 2)

)
.

The above holds both for the original System A and the modified
System D, and r̃i = λ given n,m > 2. For System D we have

qn∗, (n−1,m) = µ1 (1 − ρ),
qn∗, (n,m−1) = µ2 (1 − ρ),

rn∗ = λ.

With ai j fixed, we again have a finite Markov process for which
the steady state distribution πi j and the mean cost rate r can be
easily determined.

2.6 General case with K servers
In this section, we illustrate how the approach generalizes to K > 2
servers and an arbitrary box defining the boundary for S. As before,
we assume that the routing on the boundary ensures a single exit
state (see Figure 2(c)), and that the fixed routing policy outside S
is such that a state-space collapse occurs and the return state is
(approximately) the same as the exit state, so the M/M/1 model for
the mini busy period is justified.
4For example, the load balancing random split (RND) is defined by ai j = µ1/(µ1+µ2 ).

Let m = (m1, . . . ,mK ) denote the dimensions of the finite state
space, wheremk is the maximum number of jobs in server k we
are tracking. Hence, the number of states is

M =
K∏
k=1

(mk + 1).

An arbitrary state is denoted with n = (n1, . . . ,nK ), where nk is the
number of jobs in server k . We can easily map the K-dimensional
state space to one dimension using

s (n) =
K∑
i=1

*.
,
ni

i−1∏
k=1

(mk + 1)
+/
-
.

Then an arbitrary probabilistic routing is defined by anM × K
matrix α , where αik defines the fraction of jobs routed to server
k in state i . We assume that α honors the boundaries, so that, e.g.,
αMk = 0 for all k (in the full system, arriving jobs are “blocked”).
With the routing policy fixed, the transition rate matrix Q is easy
to obtain.

Consider first the departure rates. For an arbitrary state n, given
nk > 0 and server k is busy, the corresponding departure rate shows
up in Q as

qs (n),s (n−ek ) = µk ,

where ek denotes a vector with all elements zero except the kth
element that is one. For the combined super state n = m, i.e., for
i = s (m) = M , we have

qs (m),s (m−ek ) = (1 − ρ)µk , ∀k .

For the arrivals, with i = s (n), given αik > 0, we have

qs (n),s (n+ek ) = αik λ.

The cost rates, e.g., with respect to response time, are simply

rn = n1 + . . .nK + 1(n = m)
ρ

1 − ρ
.

3 EVALUATING THE APPROXIMATION
In this section, we apply our approximation to estimate the mean
response time with JSQ and SED. This exercise has two purposes:
first it validates the use of SystemD, and second, it yields a sequence
of increasingly more accurate estimates for the mean response
time. As already mentioned, JSQ minimizes the mean response time
with identical servers [17], and hence an analytic expression for its
performance, even if an estimate, is valuable.

3.1 Two identical servers with JSQ
Suppose we haveK = 2 identical servers. Let E[N ] denote the mean
number of jobs in the system. Recall the two limits:

light-traffic limit, E[N ] ≈ 2ρ, as ρ → 0, (1)
heavy-traffic limit, E[N ] ≈ ρ/(1 − ρ), as ρ → 1. (2)

By straightforward analysis of System D with n = 0, 1, . . . , one
obtains a sequence of estimates for the mean number of jobs. The
first four are given in Table 1, where ρ = λ/(2µ ). Case n = 0 is the
approximation where the original system is immediately replaced
with the M/M/1 queue (equivalently, when two servers can process
the same job concurrently). Similarly, n = 1 with identical servers
reduces to the M/M/K system. Due to the assumed jockeying, we
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Table 1: Estimates for the mean number of jobs with
two identical servers and JSQ based on System D with
n = 0, . . . , 3.

E[N0]=
ρ

1 − ρ
(M/M/1)

E[N1] =
2ρ

1 − ρ2
(M/M/2)

E[N2] =
2ρ (2 + (3 − ρ )ρ (1 + ρ ))

(1 − ρ ) (1 + 2ρ ) (2 + ρ + ρ2)

E[N3] =
2ρ (4 + ρ (14 + ρ (23 + ρ (16 + 7ρ − 4ρ3))))

(1 − ρ ) (1 + 2ρ ) (1 + 2ρ (1 + ρ )) (4 + ρ (2 + ρ + ρ2))

know that these approximations are strict lower bounds for the
mean performance under JSQ.

Figure 5 shows the ratio of the estimate of E[N ] to the simulated
value for n = 0, . . . , 4. We see that the estimates quickly become
very accurate, thus supporting the assumption that System D serves
as a reasonably good model for the original system when n is
sufficiently large.

The above results for E[N ] are not new in the sense that compact
and accurate approximations can be found from the literature (also
for K > 2 servers). For two identical servers, Blanc [3] gives,

E[N ] ≈
ρ
(
4 + 10ρ − 5ρ2

)
(1 − ρ) (7ρ + 2)

,

whereas Nelson’s and Philips’ approximation [11] in the same case
is,

E[N ] ≈
2ρ (1 + ρ + ρ2 − ρ3)
(1 − ρ) (1 + ρ)2

.

The accuracy of Blanc’s expression is approximately the same as
that of E[N2], while the accuracy of Nelson’s and Philips’ expres-
sion is somewhere between those of E[N2] and E[N3] (in terms of
maximum relative error), see Figure 5. These approximations are
easy to evaluate and they all (except E[N0]) behave correctly at
the limits (1) and (2). Additionally, our approximations are lower
bounds. However, our main goal is to find (near) optimal routing
policies for heterogeneous systems and System D with a finite state
space is designed with this goal in mind.
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3.2 Three and four identical servers with JSQ
Let us now use our approach to a bit larger systems of three and
four identical servers fed by JSQ. The mean number of jobs E[N ]
in the M/M/1 queue is ρ/(1 − ρ). With K parallel servers, having
equal service rates, and fed by JSQ, E[N ] is obviously higher as
sometimes servers can be idle even if there are jobs in the system.
Figure 6 illustrates the penalty, based on our approximation, due to
having multiple servers instead of a single faster one for K = 2, 3, 4.
The solid curves correspond to estimates obtained using sufficiently
large values of n, and they can be easily verified to be surprisingly
accurate with simulations. Dashed lines correspond to the lower
bounds obtained with n = 1, i.e., to the M/M/K system (where
routing is replaced with a common queue).

3.3 Two heterogeneous servers with SED
Suppose next a heterogeneous system, µ = (2, 1), with SED(2)
where ties are resolved in favor of the slower server 2. For the mean
number of jobs, with (n,m) = (2, 1), one obtains

E[N2×1] =
3ρ
(
6 + 26ρ + 26ρ2 + 5ρ3 − 3ρ4

)
(1 − ρ)

(
12 + 46ρ + 74ρ2 + 39ρ3 + 9ρ4

) .
In Figure 7 we have depicted E[N2×1], E[N4×2] and simulated
results (dashed curve). We can see that our approximation with
(n,m) = (4, 2) is already surprisingly accurate.
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4 NEAR OPTIMAL ROUTING POLICY
In this section, we shift our focus to finding the optimal routing
policy. To this end, we consider System D and determine the opti-
mal routing for it. This is then assumed to serve as a (near) optimal
routing policy also for the original System A (within S), and there-
fore we refer to it as the NO policy. We let nk denote the number
of jobs in server k , so that the state of the whole system is n.

4.1 Admission costs
So far, we have assumed that each staten has a certain cost rate rn. In
particular, for the response time metric we have simply rn =

∑
k nk .

To make routing decisions it is convenient to think of costs incurred
upon admission of a customer. Therefore, we define an admission
cost function, denoted by c (k )i , which is the cost when a job is added
to server k currently having i jobs. The admission cost may depend
on the server’s service rate.

(1) It is easy to see that the expected response time in server k ,

c
(k )
i =

i + 1
µk

and rn =
∑
k

nk ,

are equivalent (cf. Little’s result).
(2) In general, due to PASTA, an arbitrary c (k )i is equivalent to

rn = λ
∑
k

an (k )c
(k )
nk .

where an (k ) denotes the fraction of jobs routed to server k
in state n. Thus, e.g., for a threshold θ on the queue length,

c
(k )
i = 1(i > θ ) and rn = λ

∑
k

an (k )1(nk > θ ),

are equivalent.

In general, c (k )i is some non-negative increasing function of i .

4.2 Policy iteration
Recall that we managed to reduce the infinite state space of the
original system to a classical MDP problem with a finite number
of states and well-defined cost rates in each state. Such problems
are commonly solved by using policy or value iteration methods
[12, 16]. The former involves solving Howard’s equations yielding
relative values,

rn − r +
∑
n′,n

qn′n (vn′ −vn) = 0,

where rn = rn (α ) is the cost rate in state n (with policy α ), and
r = r (α ) is the mean cost rate. Fixing, e.g., v0 = 0, the above set
of linear equations can be easily solved, yielding both the value
function vn and the mean cost rate r . Next the policy iteration step
is carried out,

α∗ (n) ≜ argmin
k

(
c
(k )
nk +v (n + uk ) −v (n)

)
,

where c (k )nk is the admission cost to server k at state nk , and uk
denotes a vector with 1 at position k and otherwise zero. This is
repeated until the procedure converges (r remains the same). Typi-
cally, policy iteration converges rapidly, and later in the examples
we see that this is the case also here.

4.3 Difference between models
Let us next compare any two systems (a) and (b) that make the
same decisions within S and honor the boundary B, so differ only
outsideB. This includes System B with arbitrary, but stable, routing
decisions outside S, as well as Systems C and D. The long-run
mean cost rates are r (a) and r (b ) , where the superscripts indicate
the system, and in general r (a) , r (b ) .

Then consider an arbitrary state n ∈ S. As the two systems
make the same decisions until reaching the corner point n∗, their
sample paths during this time interval are identical. It follows that
for the value functions, v (a)

n and v (b )
n ,

v
(a)
n −v

(a)
n∗ = E[C (n,n

∗) − r (a) T (n,n∗)],

v
(b )
n −v

(b )
n∗ = E[C (n,n

∗) − r (b ) T (n,n∗)],

where C (n1,n2) and T (n1,n2) denote the costs incurred and the
duration of time before a system initially in state n1 reaches state
n2) for the first time.5 Due to the identical routing decisions within
S, the only difference on the right-hand side is in the mean cost
rates, r (a) , r (b ) . However, given that for m sufficiently large,
r (a) ≈ r (b ) , the corresponding relative values are also practically
identical within S.

If (a) is System B with parallel queues with any, including the
optimal, stable routing, except for on the boundary, and (b) is a
system where outside S the system is reduced to an M/M/1 queue
(or an equivalent super state), then costs such as the mean response
time are clearly smaller, r (b ) < r (a) , because (a) could have idling
in states outside S. Later we show numerically that, with respect
to mean response time, when two servers are identical and the
optimal routing policy JSQ is applied in every state in both (a) and
(b), r (a) ≈ r (b ) for n = m > 2, Hence, also the corresponding
value functions are practically equivalent, and the adverse effects
of simplifying the system to a finite Markov process are negligible.

4.4 Numerical examples
Next we will illustrate the procedure and the NO policies for het-
erogeneous two server systems with µ1 ≥ µ2. As a reference, we
consider the following three heuristic policies: (i) Load balancing
random split (RND) that chooses the server k with probability
of µk/(µ1 + µ2); (ii) JSQ; and (iii) Shortest Expected Delay (SED)
that chooses the server that minimizes the expected response time
[13, 14]. Ties with JSQ and SED are resolved in favor of the faster
or slower server. We indicate the tie breaking rule in parentheses,
e.g., JSQ(1) resolves ties in favor of the faster Server 1.

Example 2. Suppose (µ1, µ2) = (h µ, µ ), whereh ≥ 1measures the
asymmetry in the service rates. System D with JSQ and n =m = 2
is the smallest system with a non-trivial routing decision. That is,
which server should be chosen in state (1, 0)? When ρ → 0, the
greedy SED is optimal and chooses the faster server only if h > 2.

The system has 9 states and both steady-state distribution and
value function can be easily computed analytically, and the thresh-
old for routing also the second job to Server 1 can be computed. It

5Considering sample paths until reaching state n∗ instead of, e.g., the origin has the
benefit that no state outside S is visited before termination. This holds as the default
policy α0 applied on the boundary B forms a “surface” that ensures that the corner
point n∗ is the only exit gate from S to outside.
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c (k )i = (i + 1)/µk and ρ = 0.75 c (k )i = 1(i > 2) and ρ = 0.5
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Figure 8: Convergence of the policy iteration from different
basic policies.

turns out that the threshold increases almost linearly from 2 to 3.74
as ρ increases from zero to one. That is, when the load is higher the
secondary server is taken into use earlier. This observation holds
also when n > 2 with slightly changed numerical values.

Example 3. Suppose (µ1, µ2) = (3, 1), i.e., the secondary server is
three times slower than the primary server. In the first case, the
offered load is relatively high, ρ = 0.75, and the objective is to
minimize the mean response time, c (k )i = (i + 1)/µk . In the second
case, the offered load is medium, ρ = 0.5, and the cost function is
the unit step function c

(k )
i = 1(i > 2). The parameters (n,m) we

set to (30, 10).
Figure 8 illustrates the convergence of policy iteration when

starting from three different basic policies for both cases. On the x-
axis is the iteration round (zero corresponds to the basic policy), and
on they-axis is the performance.We observe that it takes 3-5 rounds
before the NO policy is found, and that the largest improvement
from every basic policy indeed takes place in the first step, which
supports the claim that FPI policies are often “near-optimal”, and
the basic policy does not matter so much.6

Example 4. Now we take a closer look at when SED and NOmake
different decisions. Let us assume that (µ1, µ2) = (3, 1), the offered
load ρ is varied and the objective is to minimize the mean response
time. The corresponding policies are illustrated in Figure 9. First
we observe that SED(2) appears to be near optimal when load is
low. As the load increases, NO routes the first job “earlier” to Server
2 in anticipation of new jobs arriving soon. The higher the load,
the more pronounced the proactive action is. Otherwise the switch-
over curves show a “three jobs to faster server, and then one to slower”
pattern, as expected.

Figure 10 depicts the relative increase in mean response time
when JSQ and SED with different tie breaking rules are used in-
stead of NO. As expected, JSQ and SED are good and robust routing
policies but not optimal (in this case). With JSQ it is clearly im-
portant to favor the faster Server 1 so that the first job goes there.
SED routes the first job automatically to the faster server, and it is
actually better to route a job to slower Server 2 in case of ties. We

6When RND is applied in every state, E[N ] = 6. However, we assumed JSQ/SED
outside A, and this is why RND (within A) has a bit better performance in Figure 8
(left). For us, this discrepancy is irrelevant as our focus is on the optimal dynamic
policies, for which JSQ/SED at higher states is a fair choice.

can observe that JSQ(1) increases the mean response time by about
10% and SED(2) up to 2%, except when ρ is (very) low or high.

Example 5. Next we compare a single fast server with µ = 4 to (i)
two identical servers with (µ1, µ2) = (2, 2), (ii) two heterogeneous
servers with (µ1, µ2) = (3, 1), and (iii) two heterogeneous servers
with (µ1, µ2) = (3.5, 0.5). With identical jobs and themean response
time metric, the single fast server is obviously the optimal configu-
ration. For the two server systems, we consider JSQ(1), SED(2) and
NO. As some systems are highly asymmetric, it is important to use
an appropriate n ×m box instead of an n × n square for SED and
NO. The numerical results are depicted in Figure 11. Note that es-
pecially JSQ(1) suffers from heterogeneity in the sense that a lower
mean response time can be achieved with two identical servers
even though JSQ(1) favors the faster server.7 In the homogeneous
case, JSQ and SED coincide with NO. With NO, the mean response
time decreases as the heterogeneity increases, as expected.

Example 6. Let us next consider the unit step function c (k )i = 1(i >
2) as the admission cost. The service rates are again (µ1, µ2) = (3, 1)
and the offered load is ρ = 0.5. For policy iteration, the immediate
(admission) cost ci = 1(i > 2) must be taken explicitly into account.
NO is depicted in Figure 12 (left). We note that when both queues
are too long, NO routes the new job to the slower server, thus mini-
mizing the time until a job can be admitted to the system without a
penalty. However, overloading (usually) the slowest server can lead
to instability issues when ρ is sufficiently high. This is actually an
artifact of the cost model as it may well be beneficial to overload
one queue in order to keep the others sufficiently short. However,
the assumed JSQ/SED beyond S ensures stability as long as ρ < 1.

Example 7. Finally, let us consider a non-linear cost structure,
where we combine the response time metric and the unit cost if
queue length exceeds the chosen threshold of 2 (see Section 2.5).
In this case, the cost rates in each state are simply summed. For
example, in the super state n∗ we have

rn∗ = 2n +
ρ

1 − ρ
+ λ.

As before, for policy iteration, the immediate (admission) cost ci =
1(i > 2) must be taken into account, whereas for response time this
cost is included in the state-specific cost rates.

NO is depicted in Figure 12 (right) for ρ = 0.5. Interestingly, in
this case jobs are routed to the slow secondary server only when
its queue length is below the threshold 2. Having the response time
component in the cost structure discourages overloading one queue
and thus prevents instability issues. In our case, the assumed JSQ
outside S also ensures stability as long as ρ < 1.

5 CONCLUSIONS
In this paper, we have studied the classical routing problem to K
parallel heterogeneous servers with Poisson arrivals, exponential
services, and arbitrary cost structures. Although JSQ is a widely
used dynamic routing policy for such systems, it is not generally
optimal as it neglects both the service rates and the cost structure.
Its generalization, SED, takes the service rates into account, but
neglects the cost structure.
7If the asymmetry increases a bit more, JSQ(1) is worse than the load balancing RND.
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Figure 9: Routing policies for (µ1, µ2) = (3, 1) systemwith n = 16, where lighter (yellow) states are those inwhich jobs are routed
to Server 1. From left to right, SED(1), SED(2), and then NO for ρ = {0.25, 0.75, 0.98}. The higher the load, the more aggressively
NO utilizes the slower secondary server.
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Figure 11: Performance of different heterogeneous two
server systems with JSQ(1) (dashed line on left), SED(2)
(dashed line on right), and NO (solid lines) compared to a
single fast server.

We proposed an approach where the infiniteK dimensional state
space is “compressed” to a finite K dimensional box, where one
corner state is a super state corresponding to collapsed version of
higher states. For small systems, we obtain closed-form results and
policies in symbolic form (with arbitrary λ and µk ). Numerically
the proposed approach is very efficient for a large class of rout-
ing problems with arbitrary admission costs and levels of offered
load. Our numerical examples support the common claim that the
first policy iteration round tends to yield the highest performance
improvement. The near-optimal NO policy required a few more
iteration rounds.
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