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Abstract

We develop a unified framework for analyzing and optimizing costs for systems of FCFS queues with batch arrivals,
setup delays and a general nonlinear cost structure that includes costs associated with energy used, setup times and
Quality of Service (QoS) measures. We focus on the MX/G/1 and GeoX/G/1 queues with i.i.d. service times, but our
results hold also for arbitrary i.i.d. batch structures where service times within a batch may depend on the batch size
and have different, possibly dependent, distributions. We use the notion of value functions from the theory of Markov
decision processes (MDPs), along with exponential cost functions, to develop the notion of, and simple expressions
for, value generating functions. These can be used to find efficient energy control and job dispatching policies.
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1. Introduction

Many practical and important problems can be formulated as Markov decision problems (MDPs), where optimal
or near-optimal control of a system subject to stochastic phenomena is sought. Such control problems can be found in
a wide-variety of fields, e.g., inventory management, stock portfolio management, computer networks, data centers,
and transportation.

In this paper, we are interested in single and parallel server systems. In order to optimize such a system, one needs
to first define a meaningful objective. A relatively common choice is to minimize the expected waiting time in queue
(i.e., the time before a job receives service), or alternatively, the overall response time (i.e., the mean time spent in
the system) [1, 2, 3, 4]. According to Little’s result, these are equivalent to minimizing the mean number of jobs in
the queue and in the system, respectively. Depending on the model and information, policies such as JSQ (join the
shortest queue) are optimal for these objectives.

From the fairness perspective, it might be useful to also consider higher moments of the waiting or response
time [5]. Another popular objective, reflecting the idea that longer jobs should have to wait longer, is minimization
of slowdown, i.e., the ratio of the response time to the size of the jobs (e.g., [6, 7, 8]). In a more general context,
one can introduce job- or job-class-specific holding costs to differentiate between more important and less important
jobs. On the other hand, for certain applications, the most important thing is to get jobs processed before their
deadlines. Consequently, deadline cost structures incur a (unit) cost whenever a deadline for waiting or response time
is missed. Often these deadlines are assumed to be known [9, 10]. Moreover, jobs missing their deadlines may leave
the system immediately. Alternatively, an admission control system may reject jobs upon arrival so as to minimize the
number of deadline violations [11]. When the individual deadlines are not known, one obtains a system with (random)
abandonments [12]. More recently, the minimization of energy used has become an important objective, e.g., [5, 13].
The costs can also be server specific if one server is, e.g., more expensive to use or should be avoided for some other
reason. All of these objective functions are special cases of our general cost structure.

In particular, we define general server-specific cost functions c(i)(w, x, k), where i denotes the server, w is the
waiting time in queue, x is the service time, and k ∈ K defines the class of the job. Some special cases of these
cost structures (for identical customers) are given in Table 1. We will show how they can be incorporated into our
framework.
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Table 1: Common cost structures that all are special cases of our general framework.
Type Cost function References
waiting time c1(w) = w [1, 2, 3, 4]

higher moments cn(w) = wn, n = 1, 2, . . . [5]

slowdown cs(w, x) = 1 + w/x [6, 7, 8]

deadline(s) cτ(w) = 1(w > τ) [9, 10, 11]

w is the waiting time, x the service time of a job, and τ the deadline.
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Figure 1: Model for a parallel server system with batch arrivals.

Our basic models for single-server systems are the continuous time MX/G/1 queue and the discrete time GeoX/G/1
queue, where the inter-arrival times of batches are, respectively, exponentially or geometrically distributed. In both
cases, jobs are served in first-come-first-served (FCFS) order, and the service times are independent and identically
distributed (i.i.d.) random variables. Our framework, however, is more general and allows for service times within a
batch to depend on the batch size and have different, possibly dependent, distributions. General costs can be associated
with waiting and response time at job and at batch level. Optionally, we also assume that an idle server can be switched
to a low power state, from which it is woken up when the next batch of jobs arrives. The wake up time is non-negligible
and referred to as the setup delay, which imposes an additional delay on jobs.

We also consider a multi-server setting with n heterogeneous parallel servers, where each job is dispatched imme-
diately upon arrival to one of the servers (see Figure 1). In this case, the set of control actions includes both server
switch-off and job routing decisions. The cost structures can be server specific.

We study the optimal control policies in the MDP framework by using the so-called value functions that charac-
terize the expected future costs for each state. Often the system state is defined by the number of jobs (per server).
We refer to such models as number-aware systems.

In contrast, we assume size-aware systems in which exact service times become available upon arrival. Moreover,
we allow batch arrivals and consider general cost structures both in continuous and discrete time. Our main contri-
butions are twofold: First, we give compact expressions for the value functions of the MX/G/1 and GeoX/G/1 queues
subject to random setup delays and arbitrary cost functions defined in terms of the job-specific waiting and sojourn
times. Second, we study “exponential” cost structures that yield or generate all typically used cost structures listed in
Table 1 as special cases. These value functions have particularly convenient forms from which one can identify, e.g.,
the well-known Pollaczek-Khinchin transform formulæ and the penalty due to the setup delay.

The rest of the paper is organized as follows. In Section 2 we introduce the continuous- and discrete-time FCFS
queues and necessary notation. In Section 3, we analyze the size-aware FCFS queues with arbitrary cost functions in
the MDP framework. In Section 4 we consider exponential cost functions. In Section 5 we introduce a more general
batch structure that allows dependencies in jobs’ service times within each batch. In Section 6 we consider the special
case where only the number of jobs is known, and in Section 7, we derive policies for switching off servers and routing
jobs to parallel servers. Section 8 concludes the paper.

1.1. Related work
Prior related work has studied value functions in order to find efficient dispatching rules in different settings. In

particular, value functions enable the first policy iteration (FPI) [14, 15], where the idea is to improve a given basic
policy by choosing an alternative action yielding lower expected future costs in an infinite time horizon. The standard
approach is to start from a static basic policy under which the system decomposes and it is sufficient to analyze a
single server (pool). The necessary information to this end is provided by the value function of the given sub system
(e.g. the M/G/1 queue, or Erlang’s M/M/s system).

For Markovian systems, a sufficient state description is the number in the system (e.g., how many jobs each server
has). Consequently, such systems are often referred to as number-aware systems, as the dispatching decision is based
on that information. Several results already exist for minimizing the mean delay in number-aware systems. In the
context of routing packets in a data network, Krishnan [16] obtained the value function for the M/M/s system, of which
the M/M/1 queue is a special case. With identical jobs, this result holds for all work-preserving scheduling disciplines.
When jobs have different holding costs, the value function must be adjusted accordingly. For example, Argon et al.
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[9] consider the M/M/1-FCFS queue with a general cost c(t) for sojourn time t, and Doroudi et al. [17] give the value
function for the M/M/1-PS queue with job-specific holding costs. In particular, number-aware systems correspond
to standard Markov processes with a discrete state space, and the corresponding value functions, in principle, can
be obtained by means of dynamic programming [18, 19]. For example, Ansell et al. [20] consider multi-class FCFS
(and priority) queues with class-specific holding costs and service rates. Similarly, Leino and Virtamo [21] consider
the multi-class PS queue with class-specific arrival and service rates, for which the corresponding value function for
sojourn time is derived.

However, other state descriptions can also be relevant, which often require the assumption that more information
about a job becomes available upon its arrival. Bhulai [22] derived the value function for the M/Cox(r)/1-FCFS
queue, with a state description of (n, k), where n denotes the number in the system, and k the service phase of the
customer being processed (if any). A state description with service phases can sometimes be impractical. Sassen et
al. [23] consider the M/G/1-FCFS queue. In order to avoid dealing with the remaining service times, they resort to an
approximation and assume that the remaining processing time of the customer in service (if any) obeys the equilibrium
excess distribution.

In a size-aware system, the service times become known upon arrival, and server-specific workloads can be utilized
when dispatching jobs. The size-aware value function for the M/M/1 queue (with FCFS) is given by Aalto and
Virtamo [24], for the M/G/1 queue with FCFS, LCFS, SPT and SRPT the value function is given by Hyytiä et al.
[4], while M/D/1-PS and M/M/1-PS queues are treated by Hyytiä et al. in [25] and [26], respectively. Note that by
conditioning, the size-aware results can be utilized in the number- and age-aware context, and Hyytiä et al. [27] gives
the corresponding results for the age-aware M/G/1-FCFS and LCFS queues, where the number in the queue and the
service received (the age) are available.

In the context of preserving energy, one may consider switching a server off, which then may induce a setup delay
when the server needs to be reactivated. The value function for the M/G/1 queue with setup delays is derived by
Hyytiä et al. [5] subject to switching and processing costs in addition to the traditional costs related to the waiting
and response times. LCFS and PS scheduling disciplines in this context are considered in Hyytiä et al. [28]. Hyytiä
and Righter [29] consider the M/G/1 queue with FCFS and LCFS scheduling disciplines, setup delay, and linearly
increasing holding costs (cf. fairness).

In general, the FPI method yields a good heuristic policy that can be further improved by the so-called lookahead
approach of Hyytiä [30], which considers also the next action explicitly. For example, Hyytiä et al. [31] use this
method to control the set of running servers proactively; this also demonstrates the wide applicability of the MDP
framework.

For QoS, important quantities are the tails of the waiting and response time distributions, i.e., whether a job’s
waiting or response time exceeds some threshold referred to as a deadline. The M/G/1-FCFS queue with deadlines is
considered by the authors in [10] and [11], where in the latter the option to reject jobs (with some cost) is included.
The explicit result for the M/D/1 and M/iD/1 queues was later given in [32].

In blocking systems rejecting a job is not optional but mandated by the number of system places. In this context,
Krishnan and Ott [33] derive the value function for the Erlang M/M/s/s loss system with respect to the blocking
probability. This result was generalized by Leeuwaarden et al. [34] to the M/M/s/k system, where the example
application was the assignment of telephone calls to base stations in a mobile network.

All work summarized above assumes a Poisson arrival process, which is customary in this field. In contrast,
Hyytiä and Aalto [35] consider the Erl/G/1 queue with FCFS and LCFS, and Hyytiä et al. [36] consider the D/M/1
queue (with general admission costs).

Some of the results given in this paper were initially presented in [37], where the MX/G/1 queue with batch
arrivals, setup delay and a general cost structure was studied. Many of the results described above are special cases of
the results of [37]. In this paper, we include an analysis of the discrete time GeoX/G/1 queues and study the number-
aware cases both in continuous and discrete time (Section 6). Moreover, we generalize our results to a much larger
class of queueing models by introducing and analyzing a class-based batch structure that allows dependencies among
service times for jobs in the same batch (Section 5).

2. FCFS queueing models with batch arrivals

The first queueing model we consider is the MX/G/1 queue defined as follows.

Definition 1 (MX/G/1) The MX/G/1 queue is a single server queue where jobs arrive in batches, each batch consisting
of a random number of jobs, Bi ∼ B (i.i.d.), where B is referred to as the batch size. The batch arrival process is a
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Table 2: Notation.
Quantity Description
B size of a batch (number of jobs)
A number of jobs ahead in the same batch (depends on B)
X service time of a job (size of a job)
H service time of a batch, H = X1 + . . . + XB

λb arrival rate of batches
λ arrival rate of jobs, λ = λb E[B]
ρ offered load, ρ = λE[H]
D setup delay of an idle server
c(w, x, k) cost function (waiting time, service time and job’s class)
r mean cost rate, r = λE[c(W, X,K)]

Poisson process at rate λb. The service times of jobs are i.i.d., Xi ∼ X, and thus the service time of the batch is a
random sum,

H , X1 + . . . + XB.

In parallel, we consider also an equivalent discrete-time queue referred to as the GeoX/G/1 queue that is defined
as follows.

Definition 2 (GeoX/G/1) The discrete-time GeoX/G/1 queue receives a new batch of B jobs with discrete sizes X1, . . . , XB,
at every time step with probability λb, where the Xi are i.i.d. strictly positive integer-valued (discrete) random vari-
ables, Xi ∼ X ≥ 1. Hence, the interarrival-time of batches obeys a geometric distribution and the total service time of
a batch is again H = X1 + . . . + XB. Between time steps, one unit of work, if present, is discharged.

Alternatively, we can also consider the following characterization of the discrete-time queue.

Definition 3 (DX/G/1) The discrete-time DX/G/1 queue receives N jobs, X1, . . . , XN , at every time step, where N ≥ 0
and the Xi are strictly positive integer-valued, i.i.d., random variables. Between time steps, one unit of work, if present,
is discharged.

These two models characterize the same system given λb = P{N > 0} and P{N = k} = λb P{B = k} for k > 0. The latter
model simply makes it explicit that the arrival process can be arbitrary. However, in what follows, we will consider
the GeoX/G/1 queue when discussing discrete-time systems.

In both continuous and discrete time, the offered load, denoted by ρ is

ρ , λb E[H] = λE[X], (1)

where λ denotes the job arrival rate, λ = λb E[B]. In general, we assume that ρ < 1 so that the system is stable and
ergodic.

A sufficient state description for both continuous- and discrete-time FCFS queues is the backlog (unfinished work)
denoted by u. With discrete-time systems, it is necessary to be more specific and also define whether the queue is
observed just before or immediately after every time step. The former corresponds to the late arrival system, and
the latter to the early arrival system. In this paper, we assume the early arrival system for convenience as then many
expressions have the same form in discrete and continuous time. This means that if the discrete-time system is in state
u > 0, then the state when the next batch arrives is at most u − 1.

The main advantage of studying queueing models with batch arrivals instead of requiring B = 1 is that by adjusting
the batch size distribution we can model more bursty arrival processes while maintaining the memoryless property of
the arrival process. Somewhat orthogonally, in Section 5, we relax the i.i.d. requirement for service times within a
batch, and allow arbitrary dependencies within the batch. For example, the service time of the first and second job of
a batch may obey a different distribution. The sequence of batches are still assumed to be i.i.d.

We also consider systems where the server is switched off when idle. The motivation for this is the presumed
energy savings. The drawback is that restarting the server takes some time.

Definition 4 (Setup delay D) A server is assumed to enter a low-power state immediately upon becoming idle to
preserve energy. The low-power state lasts until the next batch of jobs arrives, at which time the server enters a setup
phase. The time durations spent in the setup phase, referred to as the setup delays, are non-negative i.i.d. random
variables, Di ∼ D. The service of the first job of the batch starts immediately after the corresponding setup delay.
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With the MX/G/1 queue, D can be a continuous random variable (i.e., its support is the non-negative real numbers),
whereas with the GeoX/G/1 queue D is an integer-valued random variable. The waiting time distribution and its mean
in the MX/G/1 queue with setup delays D has been studied in [38] and [39], see also [40, 41].

2.1. Busy periods
Let us first recall some standard results regarding the length of the busy period denoted by Tb. Note that when

considering busy periods, each batch of jobs can be seen as one larger job of equivalent size.
In the case of the MX/G/1 queue, batches arrive according to a Poisson process with rate λb, i.e., the batch interar-

rival time obeys the exponential distribution with parameter λb. The service time X and setup delay D are generally
distributed continuous random variables. Consequently, also the duration of the busy period Tb can have arbitrary
values.

In contrast, with the discrete-time GeoX/G/1 queue, the random quantities X and D are integer-valued. We let
Geo0(p) denote a geometrically distributed random variable starting from zero, i.e., pi = (1 − p)i p, i = 0, 1, . . ., and
Geo1(p) a geometrically distributed random variable starting from one, pi = (1− p)i−1 p, i = 1, 2, . . .. The inter-arrival
time of batches, measured in time slots, obeys the Geo1(λb) distribution. The busy period we define as follows.

Definition 5 The busy period in GeoX/G/1 lasts until the system becomes empty and there is no immediate arrival,
i.e., until a genuine idle period starts (see Figure 3(a)).

Consequently, in the discrete time system also the length of the busy period Tb is integer-valued.
Given the early arrival system in discrete time, the mean results related to the busy periods have same forms:

Lemma 1 The mean remaining busy period both in the MX/G/1 and GeoX/G/1 queues with setup delay is

E[Tu] =
u

1 − ρ
, (2)

where u denotes the backlog. Consequently, the mean busy period is given by

E[Tb] =
E[H + D]

1 − ρ
.

Both systems form a renewal process where the renewal point is the time instant when a system becomes idle. The
mean renewal interval is given by

E[Tr] =
1
λb

+ E[Tb] =
1 + λb E[D]
λb(1 − ρ)

. (3)

Finally, the mean number of jobs served during a busy period is

E[Nr] =
E[B]
1 − ρ

(1 + λb E[D]) .

Proof: The results are well-known and can be found in many text books. �

2.2. Generating Functions and Transform Domain
Both the MX/G/1 and GeoX/G/1 queue can be analyzed in the transform domain.

Definition 6 For a non-negative discrete random variable B, the generating function (z-transform) is

B̃(z) , E[zB].

For continuous random variables, we use the Laplace-Stieltjes transform:

Definition 7 (LST) The Laplace-Stieltjes transform of the random variable X ≥ 0 is (see, e.g., [42] and [43])

X∗(s) , E[e−sX], s > 0.

Throughout we will use an asterisk to denote the transform of a continuous random variable. As is well known, see,
e.g., [42, 43], these transforms, when defined, encompass all the necessary information about a random variable in
a single function and, e.g., the LST of the sum of two independent continuous random variables, Z = X + Y , is
Z∗(s) = X∗(s) · Y∗(s). Similarly, for random sums of independent and identically distributed continuous and discrete
random variables, Z =

∑N
i=1 Xi, where N is an integer-valued random variable, we have

Z∗(s) = Ñ(X∗(s)), and Z̃(z) = Ñ(X̃(z)). (4)
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2.3. Batch size distribution B
In all our models, the fundamental assumption is that batches are i.i.d. This is clearly the case with the MX/G/1

and GeoX/G/1 queues, where also the service times of the jobs are i.i.d., but it also holds with the more general batch
structures considered later in Section 5. Consequently, batch sizes Bi, defining the number of jobs in the ith batch, are
i.i.d. random variables, Bi ∼ B.

The probability that a randomly chosen job came from a size i batch is

i P{B = i}
E[B]

,

and the probability that a job is the ith job of a batch is

bi ,
∞∑
j=i

j P{B = j}
E[B]

1
j

=
P{B ≥ i}

E[B]
.

For a randomly chosen job, let A denote the number of jobs there are ahead of it in the same batch,

P{A = i} = bi+1 =
P{B ≥ i + 1}

E[B]
. (5)

That is, (5) gives the distribution for job’s position within the same batch. For example, the probability of being the
first job is P{A = 0} = 1/E[B]. Similarly, the mean number of jobs ahead in the same batch is given by

E[A] =
1

E[B]

∞∑
i=1

P{B ≥ i + 1} · i =
1
2

(
E[B2]
E[B]

− 1
)
, (6)

and the corresponding generating function is

Ã(z) = E[zA] =
1

z E[B]

∞∑
i=1

P{B ≥ i} zi. (7)

2.4. M/G/1 in the transform domain
Next we recall some well-known basic results for the M/G/1 queue. The Pollaczek-Khinchin transform formula

for the waiting time in the standard M/G/1 queue (i.e., without setup delay) is

W∗0 (s) =
(1 − ρ)s

s − λ(1 − X∗(s))
. (8)

From [44], we find the LST of the waiting time for the M/G/1 queue, where the first job has an exceptional service
time,

W∗x (s) = p0 ·
s + λ(X∗(s) − X∗0(s))

s − λ(1 − X∗(s))
,

where X0 is the service time of the job starting the busy period, X is the service time of all other jobs, and p0 is the
probability that the system is idle,

p0 =
1 − λE[X]

1 − λ(E[X] − E[X0])
.

Note that the waiting time of the first job of the busy period is still zero in this model. For the M/G/1 with setup delay,
X0 = X + D, and

p0 =
1 − ρ

1 + λE[D]
. (9)

Additionally, in our case also the first job experiences the setup delay D, yielding

W∗(s) = W∗x (s) + p0(D∗(s) − 1) =
1 − ρ

1 + λE[D]
·
λ + D∗(s)(s − λ)
s − λ(1 − X∗(s))

, (10)

where the term p0(D∗(s) − 1) accounts for the waiting time of the first job. Thus, we obtain

W∗(s) = W∗0 (s) ·W∗e (s), (11)
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where
W∗e (s) =

λ + D∗(s)(s − λ)
s(1 + λE[D])

,

corresponds to the extra waiting time due to the setup delay. Fuhrmann and Cooper’s decomposition property, illus-
trated by (11), holds for a large class of M/G/1 queues with different vacation models, see [45] and [46]. (The setup
delay D can also be interpreted as a vacation.) In the following section, we present such results for the MX/G/1 queue
that are the needed for our later developments with respect to different value functions.

2.5. MX/G/1 in the transform domain

Consider next the batch arrival process of B jobs with i.i.d. service times Xi ∼ X. The service time of the whole
batch is a random sum, H = X1 + . . . + XB, for which we have (see (4))

E[H] = E[B] · E[X],

E[H2] = E[B] · V[X] + E[B2] · E[X]2,

H∗(s) = B̃(X∗(s)), (12)

where V[X] is the variance of X.

2.5.1. Without setup delay
For MX/G/1, the waiting time of a randomly chosen job is the sum of the batch-level waiting time Wb and the

service times of those jobs from the same batch that happen to be ahead of the given job, Wa. For the former, we can
utilize (8),

W∗b (s) =
s(1 − ρ)

s − λb(1 − B̃(X∗(s)))
,

and the latter is given by
W∗

a (s) = Ã(X∗(s)). (13)

Thus the LST for the waiting time of a job is given by W∗0 (s) = W∗b (s) ·W∗a (s), yielding

W∗0 (s) =
(1 − ρ)s Ã(X∗(s))

s − λb(1 − B̃(X∗(s)))
. (14)

2.5.2. With setup delay
Again, the M/G/1 result gives the waiting time for the batch in the context of MX/G/1. The first batch of the busy

period increases the backlog to H + D, whereas the later batches increase the backlog by Hi ∼ H. Consequently, from
(11) we obtain the LST for the batch-level waiting time with a setup delay, W∗b (s) ·W∗e (s), where the LST for the extra
delay (penalty) due to the random setup time D is now given by

W∗e (s) =
λb + (s − λb) D∗(s)

(1 + λb E[D])s
. (15)

Furthermore, the individual jobs may have to wait additionally until the jobs ahead of them within the same batch
have been served. Thus,

W∗j (s) = W∗b (s) ·W∗e (s) ·W∗a (s). (16)

We can also write
W∗j (s) = W∗0 (s) ·W∗e (s).

Note that We depends on the batch arrival rate λb and setup delay D, but not on the batch size, offered load ρ, or
the service time distribution X. For example, the penalty in terms of the mean sojourn time is

E[We] = lim
s→0+

W∗e
′(s) =

2 E[D] + λb E[D2]
2(1 + λb E[D])

. (17)
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2.5.3. Examples
Example 1 According to (16), the waiting time in the MX/G/1 queue is a sum of three terms with mean [38, 39, 41, 37],

E[W] = E[Wb] + E[We] + E[Wa],

where

E[Wb] =
λbE[H2]
2(1 − ρ)

=
λb(E[B] · V[X] + E[B2] · E[X]2)

2(1 − ρ)
, (batch-level)

E[We] =
2 E[D] + λb E[D2]

2(1 + λb E[D])
, (setup delay)

E[Wa] = E[A] · E[X] =
E[X]

2

(
E[B2]
E[B]

− 1
)
, (intra-batch),

and E[A] is given in (6). Similarly, according to (22), the waiting time in the GeoX/G/1 queue is also a sum of three
equivalent terms with

E[Wb] =
λbE[H2] − ρ

2(1 − ρ)
=
λb(E[B] · V[X] + E[B2] · E[X]2) − ρ

2(1 − ρ)
, (batch-level)

E[We] =
(2 − λb) E[D] + λb E[D2]

2(1 + λb E[D])
, (setup delay)

E[Wa] =
E[X]

2

(
E[B2]
E[B]

− 1
)
. (intra-batch)

Example 2 Suppose we have the MX/G/1 queue with geometrically distributed batch size, B ∼ Geo1(q), so that

E[B] =
1
q
, and E[B2] =

2 − q
q2 .

Then, for A we have from (5)

P{A = i} =
P{B ≥ i + 1}

E[B]
=

(1 − q)i

1/q
= (1 − q)iq,

i.e., A ∼ Geo0(q). Hence, the mean number of jobs ahead of a random job in a batch is (follows also from (6))

E[A] =
1 − q

q
.

The mean sojourn time of a job in this MX/G/1 queue, E[T ], is then

E[T ] =

setup penalty︷                  ︸︸                  ︷
2 E[D] + λb E[D2]

2(1 + λb E[D])
+

batch waits︷     ︸︸     ︷
λb E[H2]
2(1 − ρ)

+

job waits︷         ︸︸         ︷
1 − q

q
· E[X],

where E[H2] = E[X2]/q + E[X]2 · 2(1 − q)/q2, yielding

E[T ] =

setup penalty︷                  ︸︸                  ︷
2 E[D] + λb E[D2]

2(1 + λb E[D])
+

M/G/1︷    ︸︸    ︷
λE[X2]
2(1 − ρ)

+

batch penalty︷           ︸︸           ︷
1 − q

q(1 − ρ)
E[X] .

Note that as q → 1, the batch sizes reduce to 1 and the batch penalty disappears. Similarly, when D = 0, the setup
penalty vanishes.

2.6. GeoX/G/1 in the transform domain
Let us next state some necessary results concerning the waiting time distribution in the GeoX/G/1 queue, i.e., the

discrete time counterparts of the Pollaczek-Khinchin transform formulæ. The generating function of the waiting time
distribution W in the Geo/G/1 queue without a setup delay is given by [47, Sec. 4.6.1]

W̃0(z) =
(1 − z)(1 − ρ)

(1 − z) − λ(1 − X̃(z))
. (18)

The setup delay shows up again as an independent random variable (cf. decomposition).
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Proposition 1 The generating function of the waiting time distribution in the Geo/G/1 queue with a random integer-
valued setup delay D is

W̃(z) = W̃e(z) · W̃0(z), (19)

where the generating function of the additional delay We is

W̃e(z) =
(1 − z − λ)D̃(z) + λ

(1 − z)(1 + λE[D])
. (20)

The proof is given in the Appendix.

Example 3 The mean waiting time in the Geo/G/1 queue with a random setup delay D is

E[W] =
λE[X2] − ρ

2(1 − ρ)
+

(2 − λ)E[D] + λE[D2]
2(1 + λE[D])

. (21)

The corresponding results with batch arrivals follow immediately from (18), which in this case gives the batch-
level waiting time:

Corollary 1 For the discrete-time GeoX/G/1 queue with a random setup delay D, the generating function of the waiting
time distribution W is

W̃(z) = W̃b(z) · W̃e(z) · Ã(X̃(z)), (22)

where W̃b is the batch-level waiting time without setup delay (cf. (18)),

W̃b(z) =
(1 − z)(1 − ρ)

1 − z − λb(1 − B̃(X̃(z)))
,

We corresponds to the additional waiting time due to setup delay,

W̃e(z) =
(1 − z − λb)D̃(z) + λb

(1 − z)(1 + λb E[D])
, (23)

and Ã(·), given in (7), is the delay due to jobs ahead in the same batch. Alternatively to (22), we can also write

W̃(z) = W̃0(z) · W̃e(z),

where W̃0(z) corresponds to the waiting time in the GeoX/G/1 queue with no setup delay,

W̃0(z) = W̃b(z) · Ã(X̃(z)). (24)

In explicit form, we thus have

W̃(z) =
(1 − ρ)

[
(1 − z − λb)D̃(z) + λb

]
Ã(X̃(z))

(1 + λb E[D])
[
1 − z − λb(1 − B̃(X̃(z)))

] . (25)

For the sojourn time distribution we have T̃ (z) = W̃(z) · X̃(z).

3. Value functions with general costs

In this section, we consider the two FCFS queues with general cost structures that are functions of waiting time,
sojourn time and job class. The main results, Propositions 2 and 3, characterize the corresponding value functions,
defined later, in compact and useful expressions.

Definition 8 (Cost structure) We letK denote the set of job classes. Each job incurs a cost immediately upon arrival
defined by a cost function c(w, x, k), where w denotes the waiting time in queue, x the service time, and k ∈ K the
class of the job.
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The above cost structure is very general. We note that class k can be, e.g., equal to the batch size B. The cost can
be or can include a job- or batch-specific random variable (i.i.d.), allowing, e.g., job classes with different weights.
Similarly, the cost can take into account the job’s service time x (cf. slowdown in Table 1). Moreover, the cost can
also depend on the position of the job within the batch. Common special cases include costs that depend solely on
the waiting or sojourn time, in which case we write simply cW (w) and cT (t), respectively. Some examples are given in
Table 1.

The systems we consider in this paper are size-aware, which means that service times become known upon arrival
and, consequently, the state of the queue, under FCFS, can be described by the backlog (unfinished work) u, where u
may also include any unfinished setup time. In discrete time systems, we observe the state of the queue, u, right after
the new job, if any, has arrived, and has been added to the queue. Hence, the first thing that will happen is that u
decreases by 1 if u > 0, after which comes the next opportunity for a batch to arrive.

We let U denote the backlog in steady state. The backlog is updated instantly as each job of the batch gets added
to the queue one at a time. When a job arrives to an empty queue, the setup delay is also added to the backlog. The
backlog U corresponds to the waiting time the batch sees (cf. PASTA). Additionally, individual jobs must wait until
the jobs ahead of them within the same batch have been processed.

We let r denote the long-run average cost rate (cost per unit time) and c̄ = E[c(W, X,K)] the mean cost incurred
per arriving job, so

r , λE[c(W, X,K)] = λ c̄. (26)

where W is the waiting time in queue, X is the service time, and K denotes the job’s class.
We carry out our analysis in the context of Markov decision processes. The central concept is the value function.

Definition 9 (Value function) The value function is the expected cost difference in the infinite time-horizon between
a system initially in state u and a system in equilibrium,

v(u) , lim
t→∞

E[V(u, t) − rt], (27)

where the random variable V(u, t) denotes the total costs incurred during time (0, t) when the system is initially in
state u.

Because we assume ρ < 1, the queues are stable and ergodic. We further assume that the cost structure is such
that the above limit exists and is finite. This depends both on the service time distribution and the cost structure (cf.
Pollaczek-Khinchin mean waiting time formula; a stable queue may have infinite mean waiting time).

In general, the constant term in v(u) is irrelevant as the important quantity for making decisions is the difference
v(u + x) − v(u). Consequently, most of our results are given in terms of v(u) − v(0). That is, for initial backlog u, v(u)
characterizes the expected deviation (in terms of costs) from the mean cost (rate), whereas v(u) − v(0) characterizes
the expected deviation from the cost when the system is initially empty.

Moreover, as the time instants when a queue becomes idle are renewal points, it is sufficient to consider the
remaining busy period, and by dynamic programming, we have

v(u) = E[V(u,Tu) − r Tu] + v(0), (28)

where Tu denotes the length of the remaining busy period.

3.1. Continuous time MX/G/1 queue
Let W and W0 denote the waiting time of a job in steady state for systems with and without the setup delay D, and

let Y denote a continuous uniformly distributed random variable, Y = Y(u) ∼ U(0, u), that is independent of W0, X
and K. Then we have the following result for the value function.

Proposition 2 The value function v(u) for the MX/G/1 queue with setup delays satisfies

v(u) − v(0) =
λu

1 − ρ
E[c(W0 + Y, X,K) − c(W, X,K)]. (29)

We first prove the following Lemma regarding the total cost S accumulated during a busy period when the cost of
an individual job is c(W, X,K).

Lemma 2 The mean total cost an MX/G/1 queue with setup delays incurs during a busy period is

E[S ] =
(1 + λb E[D])E[B]

1 − ρ
E[c(W, X,K)]. (30)

10



Arrivals

Y1
Y2

mini busy
period #1

mini busy
period #2

Arrivals

T1 T2

Y1
Y2

u

MX/G/1 busy periods

Figure 2: A sample realization with two mini busy periods until the server becomes idle (left). Mini busy periods interrupting the service of the
initial backlog of u originate from the Poisson process with rate λb (right).

Proof: Recall that batches arrive at rate λb and jobs at rate λ = λb E[B]. The mean cost rate is by definition

r = λE[c(W, X,K)] = λb E[B] E[c(W, X,K)]. (31)

Consider a renewal process where the renewal point is the time instant when the system becomes idle. The mean
renewal interval is given by (3)

E[Tr] =
1 + λb E[D]
λb(1 − ρ)

.

Hence, an alternative expression for the mean cost rate is

r =
E[S ]
E[Tr]

=
λb(1 − ρ)

1 + λb E[D]
· E[S ]. (32)

Combining (31) and (32) yields (30). �
The following corollary allows us to include an offset in the cost function as needed in our proof of Proposition 2.

Corollary 2 When jobs incur costs according to c(W + y, X,K), where y is a given constant, then noting that
c2(w, x, k) , c(w + y, x, k) is just another cost function, it follows that the mean cost incurred during a busy pe-
riod is

E[S (y)] =
(1 + λb E[D])E[B]

1 − ρ
E[c(W + y, X,K)].

If the server has no setup delay (D = 0), then the mean cost incurred during a busy period is

E[S 0(y)] =
E[B]
1 − ρ

E[c(W0 + y, X,K)], (33)

where S 0(y) denotes the cost incurred during a busy period with initial work y and no setup delay.

With these, we are ready to prove Proposition 2:
Proof: (Proposition 2.) By dynamic programming, (28), the value function v(u) satisfies,

v(u) = E[V(u,Tu)] − E[Tu] r + v(0),

where E[V(u,Tu)] denotes the mean cost incurred during the remaining time of the busy period Tu when currently in
state u, and r = λE[c(W, X,K)] is the mean cost rate (with the setup delay). We recall that (2) gives E[Tu] = u/(1− ρ),
and hence,

E[Tu] r =
λu

1 − ρ
E[c(W, X,K)]. (34)

Consider now the first term E[V(u,Tr)]. Recall that costs are incurred only upon batch arrivals. When a batch of
jobs arrives before the system is empty, i.e., with backlog u > 0, a new mini busy period is started that will end when
the backlog returns to the same level (see Figure 2 (left)). As the server was already processing jobs, the mini busy
periods do not involve any setup delays. Let Nb denote the number of mini busy periods, and Yi the unfinished work
in system at the time the ith mini busy period starts. Then,

E[V(u,Tu)] = E

 Nb∑
i=1

S 0(Yi)

 , (35)
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where S 0(Yi) is the cost during the mini busy period with initial work Yi and no setup delay. Referring to Figure 2
(right), we see that Yi = u − Ti, where the Ti’s represent the instants where the service of the original unfinished work
u is interrupted in a system where the durations of these interruptions are squeezed to zero. The intervals between
successive instants Ti are exponentially (and independently) distributed (taking 0 = T0) and consequently constitute a
Poisson process with intensity λb. Given the number Nb of arrivals from this Poisson process in the interval (0, u), the
set of arrival instants may be obtained drawing instants T̃i, i = 1, . . . ,Nb, independently, from the uniform distribution
U(0, u). Consequently, the set of values Ỹi is obtained drawing each of them independently from the distribution
U(0, u). We denote by Y a generic variable of this kind, Y(u) ∼ U(0, u). The actual values Yi represent an ordered set
of the Ỹi. Ordering does not affect the sum in (35), and noting that E[Nb] = λbu and using the result (33), we can write
(35) in the form

E[V(u,Tu)] = E

 Nb∑
i=1

S 0(Yi)


= E

E
 Nb∑

i=1

S 0(Yi)
∣∣∣∣∣ Nb




= E[Nb] · E[S 0(Y)]
= E[Nb] · E[E[S 0(Y)] |Y]

= λbu ·
E[B]
1 − ρ

E[c(W0 + Y, X,K)] =
λu

1 − ρ
E[c(W0 + Y, X,K)],

where W0 denotes the waiting time in the system with no setup delay (because mini busy periods do not involve setup
delay). Combining the above with (34) completes the proof. �

The above immediately yields a corollary (see [5]) characterizing the role of the setup delay in the value functions.

Corollary 3 Setup delay D gives rise to a negative linear term in the value function,

v(u) − v(0) = v0(u) − v0(0) −
λu

1 − ρ
E[c(W, X,K) − c(W0, X,K)], (36)

where v(u) and v0(u) denote the value functions with and without the setup delay of D, and W and W0 denote the
waiting time with and without the setup delay.

Note that the expectation E[c(W, X,K) − c(W0, X,K)] is a constant factor equal to the increase in the mean cost a job
incurs due to the setup delay.

As Y ∼ U(0, u) in (29), we can write explicitly that

v(u) − v(0) =
λ

1 − ρ

∫ u

0
E[c(W0 + y, X,K) − c(W, X,K)] dy. (37)

Thus,

v′(u) =
λ

1 − ρ
E[c(W0 + u, X,K) − c(W, X,K)]. (38)

In general, if a random variable Y ∼ U(0, u) is independent of everything else, then for any differentiable (cost)
function c(·) with integrable derivative the following holds identically:

u E[c′(Z + Y)] = E[c(Z + u)] − E[c(Z)],

where, for clarity, we have omitted the other two parameters X and K. We note that the cost function c(w) can also be
non-differentiable at countably many points. Consider, e.g., the deadline cost cτ(w) given in Table 1. Without setup
delay, W ∼ W0, and (38) thus reduces to

v′0(u) =
λu

1 − ρ
E[c′(W0 + Y)]. (39)

Note that (38) and (39) are first order ordinary differential equations and, provided that the expectations on the right
hand side can be evaluated, they can easily be integrated to yield a unique solution for the difference v(u) − v(0).
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(a) Renewal process comprising a busy and idle period. (b) Derivation of the expected costs.

Figure 3: Evolution of the GeoX/G/1 queue is a renewal process (left). The expected costs during the remaining busy period can be deduced the
same with as with the MX/G/1 queue by noting that costs are incurred during the mini busy periods.

3.2. Discrete time GeoX/G/1 queue
Lemma 3 The mean costs incurred during a busy period for the GeoX/G/1 queue is given by the same formula as that
for the MX/G/1 queue, Eq. (30),

E[S ] =
(1 + λb E[D])E[B]

1 − ρ
E[c(W, X,K)].

Thus, the mean costs incurred during a busy period with an additional waiting time y when server has no setup delay
is given by Eq. (33),

E[S 0(y)] =
E[B]
1 − ρ

E[c(W0 + y, X,K)],

where W0 now denotes job’s waiting time in the GeoX/G/1 queue without a setup delay.

Proof: (3.) The same proof as that for Lemma 2 holds in discrete time (see Figure 3(b)). �
Given that also the mean results regarding the busy period (see Lemma 1) are identical, it is no surprise that the

result for the value function is similarly almost identical to that of the MX/G/1 queue:

Proposition 3 The value function for the GeoX/G/1 queue with a setup delay D satisfies

v(u) − v(0) =
λu

1 − ρ
E[c(W0 + Y, X,K) − c(W, X,K)], (40)

where Y is an independent integer-valued uniformly distributed random variable, Y ∼ U{0, 1, . . . , u − 1}.

Proof: We are again interested in the mini-busy periods, during which new costs are incurred. As the current state u
is observed right after a possible arrival instant, the mini-busy periods can start at levels u − 1, . . . , 0 (cf. Def. 5), and
the random offset in the observed backlog is Y ∼ U{0, 1, . . . , u − 1}. Dynamic programming (see (28)) gives

v(u) = E[V(u,Tu)] − E[Tu] r + v(0),

where V(u,Tu) denotes the costs incurred during the remaining busy period when initially in state u, r is the mean
cost rate, and Tu the length of the remaining busy period. Utilizing (33) (cf. Lemma 3) gives

v(u) − v(0) =

u−1∑
i=0

λb E[S 0(i)] − r
u

1 − ρ
.

As r = λE[c(W, X,K)], the above reduces to

λu
1 − ρ


u−1∑

i=0

1
u

E[c(W0 + i, X,K)]

 − E[c(W, X,K)]

 ,
yielding (40). �

Moreover, let ∆ denote the difference operator, ∆v(u) = v(u + 1)− v(u) and ∆c(w, x, k) = c(w + 1, x, k)− c(w, x, k).
Note that with u = 1, (40) gives the boundary condition,

∆v(0) = v(1) − v(0) =
λ

1 − ρ
E[c(W0, X,K) − c(W, X,K)].
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Figure 4: A logistic cost function (solid line) compared with the linear cost function (dashed line) corresponding to the mean waiting time. The left
figure illustrates the cost functions and the middle and right figure the corresponding value functions (in different scales).

Thus without a setup delay ∆v0(0) = 0, i.e., v0(1) = v0(0). The counterpart for (38) is

∆v(u) =
λ

1 − ρ
E[c(W0 + u, X,K) − c(W, X,K)]. (41)

In the discrete case, it holds that u E[∆c(Z + Y, X,K)] = E[c(Z + u, X,K) − c(Z, X,K)], and without setup delays, we
have a discrete-time counterpart also for (39),

∆v0(u) =
λu

1 − ρ
E[∆c(W0 + Y, X,K)]. (42)

3.3. Examples
Example 4 (QoE with M/M/1) Suppose that when a customer’s waiting time exceeds some threshold her perception
of the quality quickly deteriorates to an unsatisfactory level. This can be modeled with a logistic cost function, say

c(w) =
1

1 + e−k(w−τ) .

The solid line in Figure 4 (left) illustrates c(w) with k = 2 and τ = 4. The dashed line corresponds to mean waiting
time, c(w) = (1/8)w (scaled to an equivalent range). Consider then the classical M/M/1 queue with λ = 1/2 and µ = 1,
for which P{W > t} = ρ e−(µ−λ)t, and (39) yields v′(u), the integral of which then gives the value function depicted in
Figure 4 (middle and right). Note the asymptotically linear behavior (cf. [10, 11]) visible in the right figure.

Example 5 (Deadlines with M/M/1) Let us next consider the M/M/1 queue with the deadline cost structure [10],

cτ(w) = 1(w > τ),

i.e., a unit cost is incurred if the waiting time exceeds threshold τ. Substituting this cost function into (37) gives

vτ(u) − vτ(0) =
λ

1 − ρ

∫ u

0
(P{W > τ − y} − P{W > τ}) dy.

Given the waiting time distribution of the M/M/1 queue is known, P{W > t} = ρe−(µ−λ)t, the above expression can be
evaluated, yielding a closed-form expression for the value function,

vτ(u) − vτ(τ) =


ρ2 e−(µ−λ)τ

(1 − ρ)2

(
e(µ−λ)u − e(µ−λ)τ − (µ − λ)(u − τ)

)
, u ≤ τ,

λ
(
1 − e−(µ−λ)τ

)
1 − ρ

(u − τ), u > τ,

(43)

thus completing the results given in [10], where an exact expression was given only for the tail u > τ. Note that in the
heavy traffic limit, where ρ→ 1, we obtain, in accordance with [10, Prop. 3],

lim
ρ→1

vτ(u) − vτ(τ) =


λ2

2
(u2 − τ2), u ≤ τ,

λ(1 + λτ)(u − τ), u > τ.
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Example 6 (Waiting time cost for MX/G/1) Let us consider the MX/G/1 queue without setup delay and c1(w) = w.
Using (29), it turns out that the value function is the same as with the M/G/1 queue [4],

v1(u) − v1(0) =
λu

1 − ρ
E[Y(u)] =

λu2

2(1 − ρ)
, (44)

as E[Y(u)] = u/2. Alternatively, substituting c′1(w) = 1 into (39) gives

v′1(u) =
λu

1 − ρ
,

which yields the same result (44). The dashed curves in Figure 4 illustrate c1(w) scaled by 1/8 and the corresponding
v(u) when λ = ρ = 1/2.

Example 7 According to (36), the setup delay shows up as a linear term. Utilizing (17), we obtain the value function
for the MX/G/1 queue with setup delay D subject to a cost that is linear in the waiting time, c1(w) = w,

v1(u) − v1(0) =
λu2

2(1 − ρ)
−

λu
1 − ρ

2 E[D] + λb E[D2]
2(1 + λb E[D])

. (45)

Recall that λ corresponds to the job arrival rate, and λb to the batch arrival rate, i.e., λ = λb E[B].

Example 8 (Polynomial waiting time cost for M/G/1) Now consider the special case of the ordinary M/G/1 queue
without setup delay when the cost function is ck(w) = wk. Then (29) reduces to

vk(u) − vk(0) =
λu

1 − ρ

k∑
i=1

(
k
i

)
E[Y(u)i] E[Wk−i].

The kth moment of Y(u) ∼ U(0, u) is

E[Yk(u)] =
uk

k + 1
,

and thus

vk(u) − vk(0) =
λ

1 − ρ

k∑
i=1

(
k
i

)
ui+1

i + 1
· E[Wk−i].

The first k − 1 moments of the waiting time are available from the Pollaczek-Khinchin transform formula.
Consequently, e.g., for k = 2, we have

v2(u) − v2(0) =
λu2

1 − ρ

(
u
3

+
λE[X2]
2(1 − ρ)

)
. (46)

Alternatively, we can utilize (39) with c′2(w) = 2w, giving

v′2(u) =
λu

1 − ρ
E[2(W + Y)] =

λu
1 − ρ

(2 E[W] + u) ,

which also yields (46).

Example 9 (Waiting time cost for GeoX/G/1) Consider the GeoX/G/1 queue without a setup delay when the cost is
either the waiting time, c(w) = w, or the sojourn time, c(w, x) = w + x. In both cases, substituting the given cost
function into (40) gives

v1(u) − v1(0) =
λu

1 − ρ
E[Y] =

λ(u − 1)u
2(1 − ρ)

.

Note that v1(1) − v1(0) = 0, as desired. The same result can also be obtained by solving the difference equation (41),
which in this case reduces to v1(u + 1) − v1(u) = λu/(1 − ρ).
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Example 10 (Polynomial waiting time cost for Geo/G/1) Consider the Geo/G/1 queue without a setup delay when
the cost is ck(w) = wk. Similarly as with the M/G/1 queue,

vk(u) − vk(0) =
λu

1 − ρ

k∑
i=1

(
k
i

)
E[Y(u)i] E[Wk−i],

where Y ∼ U{0, 1, . . . , u − 1}. Again, the first k and k − 1 moments of Y(u) and W are available, yielding an explicit
expression for the value function. For example, with k = 2 we have

v2(u) − v2(0) =
λu

1 − ρ
E[2WY + Y2] =

λ(u − 1)u
1 − ρ

(
2u − 1

6
+ E[W]

)
,

where E[W] =
λE[X2]−ρ

2(1−ρ) (see later, Eq. (21)). Again, v2(1) − v2(0) = 0, as desired.

Example 11 (Position-specific costs) Suppose that the class of the job, K, is its position within the batch, and more-
over, that the job-specific holding cost is equal to K, c(w, x, k) = wk. First, the probability that a random job is in
position i in the batch is

P{K = i} =

∞∑
j=i

j P{B = j}
E[B]

·
1
j

=
P{B ≥ i}

E[B]
,

and consequently a straightforward manipulation gives

E[K] =
1
2

(
E[B2]
E[B]

+ 1
)
.

Consider then the expectation E[c(W0 + Y, X,K) − c(W, X,K)] that appears both in the continuous and discrete time
results, (29) and (40), respectively. With this cost function,

E[c(W0 + Y, X,K) − c(W, X,K)] = E[YK] − E[(W −W0)K].

As Y is independent of everything else, the first expectation on the right-hand side simplifies to E[Y] ·E[K]. The second
expectation on the right-hand side is zero in the absence of setup delays (when D = 0). With setup delays, we have

E[(W −W0)K] =

∞∑
i=1

P{K = i} · E[(W −W0)K |K = i]

=

∞∑
i=1

P{K = i} · E[We] · i

= E[K] · E[We],

where E[We] denotes the extra delay due to the setup time, which is known for MX/G/1 and GeoX/G/1 queues (see
Example 1). Combining the above with (29) and (40) gives that the corresponding value functions in both continuous
and discrete time satisfy,

vpos(u) − vpos(0) =
λu

2(1 − ρ)
· (E[Y] − E[We]) ·

(
E[B2]
E[B]

+ 1
)
,

where E[Y] and E[We] have slightly different forms for MX/G/1 and GeoX/G/1 queues. Interestingly, the position-
specific holding cost shows up as a constant factor,

vpos(u) − vpos(0) = (v1(u) − v1(0)) ·
(

E[B2]
E[B]

+ 1
)
,

where v1(u) denotes the value functions with respect to waiting time, c1(w) = w, given in Eq. (45).

4. Exponential costs and value generating functions

In this section, we consider exponential cost functions. These cost functions have a free parameter, similar to the
LST and z-transform, that allows us to derive mean costs and value functions with respect to any polynomial cost of
the waiting or sojourn time.
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4.1. Exponential cost function with MX/G/1
With the MX/G/1 queue, we consider the following two cost functions:

cW (w, s) = 1 − e−sw, s > 0, (47)

cT (w, x, s) = 1 − e−s(w+x), s > 0, (48)

where w and x denote the waiting and service times of the job, and s is a free parameter. These costs can be interpreted
as the probability that the job completes either waiting or service before its deadline, where its deadline has an
exponential distribution with parameter s.

Not surprisingly, the cost functions (47) and (48) are closely related to the Laplace-Stieltjes transform (see Sec-
tion 2.2).

Next we will give the main result of this section, the value function for the MX/G/1 queue subject to the exponential
cost function:

Proposition 4 (waiting time) For the MX/G/1 queue with batch arrival rate λb, batch size B, i.i.d. setup time D, and
a generally distributed service time X, subject to the admission cost function (47), the mean cost is

c̄W (s) = 1 −W∗j (s), (49)

with W∗j (s) given in (16), and the corresponding value function is

vW (u, s) − vW (0, s) =
λu

1 − ρ

(
W∗e (s) −

1 − e−su

su

)
W∗

0 (s). (50)

where W∗
j (s) and W∗

0 (s) are given in (16) and (14), respectively.

Proof: The mean cost with (47) is
c̄W (s) = E[1 − e−sW ] = 1 −W∗j (s).

Similarly, the value function is obtained by substituting (47) into (29),

vW (u, s) − vW (0, s) =
λu

1 − ρ
E[c(W0 + Y) − c(W)],

=
λu

1 − ρ
E[e−sW − e−sW0 e−sY ],

and thus,

vW (u, s) − vW (0, s) =
λu

1 − ρ
(W∗j (s) −W∗0 (s) Y∗(s)). (51)

Substituting the LST of Y = Y(u),

Y∗(s) =
1 − e−su

su
,

into (51) yields (50). �
As W∗j (s) and W∗0 (s) are given in (16) and (14), they can be substituted into (50) to get an explicit expression for

the value function:

vW (u, s) − vW (0, s) =
E[B] Ã(X∗(s))

s/λb + B̃(X∗(s)) − 1

[
e−su−1+

s + (1−D∗(s))(λb−s)
1 + λbE[D]

u
]
. (52)

Without setup delay, E[D] = 0 and D∗(s) = 1, and the expressions simplify further:

Corollary 4 For the MX/G/1 queue with batch arrival rate λb, batch size B, no setup delay, and a generally distributed
service time X, subject to the (job-specific) admission cost function (47), the mean cost is

c̄W (s) = 1 −
(1 − ρ)s Ã(X∗(s))

s − λb(1 − B̃(X∗(s)))
, (53)

and the corresponding value function is

vW (u, s) − vW (0, s) =
(su + e−su − 1)E[B] Ã(X∗(s))

s/λb + B̃(X∗(s)) − 1
. (54)
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Figure 5: Bounded and strictly increasing cost function and the corresponding value function.

Corollary 5 For the M/G/1 queue with arrival rate λ, generally distributed service time X and no setup delay, subject
to admission cost function (47), the mean cost is

c̄W (s) =
s E[X] + X∗(s) − 1

s/λ + X∗(s) − 1
, (55)

and the corresponding value function is

vW (u, s) − vW (0, s) =
su + e−su − 1

s/λ + X∗(s) − 1
. (56)

Note that in the heavy-traffic limit when ρ→ 1, 1/λ→ E[X] and c̄W (s), given in (55), converges to 1, as expected.
Figure 5 illustrates an example cost function of type (47) and the corresponding value function given by (56).

Let us next consider the sojourn time, which is the sum of the waiting time and service time.

Proposition 5 (sojourn time) For the MX/G/1 queue with batch arrival rate λb, batch size B, i.i.d. setup time D, and
a generally distributed service time X, subject to the (job-specific) admission cost function (48), the mean cost is

c̄T (s) = 1 −W∗j (s) · X∗(s), (57)

with W∗j (s) given in (16), and the corresponding value function is

vT (u, s) − vT (0, s) = (vW (u, s) − vW (0, s)) X∗(s). (58)

Proof: The mean cost is
c̄T (s) = E[cT (U, X, s)] = 1 −W∗j (s)X∗(s).

Substituting cT (u, x) into (29), one obtains

vT (u, s) − vT (0, s) =
λu

1 − ρ
E[e−s(W+X) − e−s(W0+Y+X)]

which yields (58). �

Corollary 6 (sojourn time for M/G/1) For the M/G/1 queue with arrival rate λ, generally distributed service time X
and no setup delay, subject to admission cost function (48), the mean cost is

c̄T (s) = 1 −
s (1 − ρ) X∗(s)

s − λ(1 − X∗(s))
, (59)

and the corresponding value function is

vT (u, s) − vT (0, s) = (vW (u, s) − vW (0, s)) X∗(s)

=
su + e−su − 1

s/λ + X∗(s) − 1
X∗(s). (60)

From these results, many interesting special cases can be immediately obtained. First note that

cW (w, s) = 1 − e−sw = sw − (sw)2/2! + . . . =

∞∑
i=1

(−1)i+1 si

i!
c(i)

W (w),
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where the c(i)
W (w) are the polynomial cost functions for the waiting time,

c(i)
W (w) = wi, i = 1, 2, . . . (61)

Consequently,

vW (u, s) =
λu

1 − ρ
E [cW (W + Y, s) − cW (W, s)]

=
λu

1 − ρ
E

 ∞∑
i=1

(−1)i+1 si

i!

(
c(i)

W (W + Y) − c(i)
W (W)

)
=

∞∑
i=1

(−1)i+1 si

i!

(
λu

1 − ρ
E

[
c(i)

W (W + Y) − c(i)
W (W)

])

=

∞∑
i=1

(−1)i+1 si

i!
v(i)

W (u),

where the v(i)
W (u) are the value functions corresponding to costs c(i)

W (w). The argument for vT is similar. Moreover,
possible setup delays change nothing. Therefore, in analogy with the LST of a random variable, we can compute any
v(i)

W (u) and v(i)
T (u) directly from vW (u, s) and vT (u, s), respectively, by first taking the ith derivative with respect to s, and

then setting s = 0:

v(i)
W (u) = (−1)i+1 lim

s→0

di

dsi vW (u, s),

v(i)
T (u) = (−1)i+1 lim

s→0

di

dsi vT (u, s).

That is, the value functions vW (u, s) and vT (u, s), given in (50), are generating functions for the family of value
functions with respect to the polynomial costs (61). In the remainder of this paper, we refer to vw(u, s) and vT (u, s)
simply as the value generating functions for waiting and sojourn time in order to keep the discussion short.

The same steps can be taken also with the mean costs. For example, it is straightforward to compute an arbitrary
moment E[Wk] of the waiting time W in the MX/G/1 queue by using the identity

c̄(s) = E[c(W)] =

∞∑
i=1

(−1)i+1 si

i!
E[W i].

together with (49).

4.2. Exponential cost function with GeoX/G/1
With the discrete-time GeoX/G/1 queue, we consider the following exponential cost functions:

cW (w, z) = 1 − zw, 0 < z < 1, (62)

cT (w, x, z) = 1 − z(w+x), 0 < z < 1, (63)

where w and x are again the waiting and service times of the job, and z is a free parameter, which for our purposes,
is some small real number, 0 < z < 1. The main results of this section are the value functions for the discrete time
GeoX/G/1 queue subject to the exponential cost functions:

Proposition 6 For the GeoX/G/1 queue with a random setup delay D, subject to admission cost functions cW (w, z) =

1 − zw and cT (w, x, z) = 1 − zw+x, the mean costs are

c̄W (z) = 1 − W̃(z), (64)

c̄T (z) = 1 − W̃(z) X̃(z), (65)

and the corresponding value functions are

vW (u, z) − vW (0, z) =
λbu

1 − ρ

(
W̃e(z) −

1 − zu

(1 − z)u

)
W̃0(z), (66)

vT (u, z) − vT (0, z) =
λbu

1 − ρ

(
W̃e(z) −

1 − zu

(1 − z)u

)
T̃0(z). (67)

where T̃0(z) denotes the generating function of the sojourn time distribution in a system without a setup delay.

19



Proof: The mean cost (64) follows directly from the definition,

c̄W (z) = E[cW (W, z)] = 1 − E[zW ],

and similarly (65) for the sojourn time. The value function (66) for waiting time follows from (A.1) by noting
that W̃(z) = W̃e(z) W̃0(z). The value function also decomposes similarly as with the MX/G/1 queue. Substituting
c(w, x, z) = 1 − zw · zx into (40) gives immediately that

vT (u, z) − vT (0, z) = (vW (u, z) − vW (0, z)) · X̃(z),

yielding (67). �
Without setup delay, the expressions simplify and we have more explicit results. As the results for the sojourn

time follow directly from the corresponding results for the waiting time, we give the special cases only for the waiting
time metric.

Corollary 7 For the GeoX/G/1 queue without a setup delay and subject to admission cost function (62), the mean cost
is

c̄W (z) = 1 −
(1 − ρ)(1 − z) Ã(X̃(z))

1 − z − λb(1 − H̃(z))
, (68)

where H̃(z) = B̃(X̃(z)), and the corresponding value function is

vW (u, z) − vW (0, z) =
(1 − z) u + zu − 1
(1 − z)(1 − ρ)/λb

W̃0(z). (69)

or more explicitly,

vW (u, z) − vW (0, z) =
((1 − z) u + zu − 1) Ã(X̃(z))

(1 − z)/λb + H̃(z) − 1
. (70)

Without batch arrivals (when B = 1), one obtains the Geo/G/1 queue and the expressions simplify further.

Corollary 8 For the Geo/G/1 queue without a setup delay, where a job of size X arrives with probability λ at the end
of each time step, subject to admission cost function (62), the mean cost is

c̄W (z) =
(1 − z) E[X] + X̃(z) − 1

(1 − z)/λ + X̃(z) − 1
, (71)

and the corresponding value function is

vW (u, z) − vW (0, z) =
(1 − z) u + zu − 1

(1 − z)/λ + X̃(z) − 1
. (72)

Example 12 For the Geo/Geo/1 queue with X ∼ Geo1(q), the generating function of X is X̃(z) = qz/(1 − z + qz) and

vW (u, z) − vW (0, z) =
λ(1 − z + qz) ((1 − z) u + zu − 1)

(1 − z)(1 − z + qz − λ)
, (73)

vT (u, z) − vT (0, z) =
λ qz ((1 − z) u + zu − 1)
(1 − z)(1 − z + qz − λ)

, (74)

from which, e.g., for the sojourn time costs c(t) = t, one obtains the familiar result (see Example 9),

vT (u) − vT (0) =
λ (u − 1)u
2(1 − ρ)

.
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Table 3: Summary of the value generating functions in continuous and discrete time.

MX/G/1: vW (u, s) − vW (0, s) GeoX/G/1: vW (u, z) − vW (0, z)

With setup delay
λu

1 − ρ

(
W∗e (s) −

1 − e−su

su

)
W∗0 (s)

λbu
1 − ρ

(
W̃e(z) −

1 − zu

(1 − z)u

)
W̃0(z)

Without setup delay
λ(su + e−su − 1)

(1 − ρ)s
W∗0 (s)

λb ((1 − z) u + zu − 1)
(1 − z)(1 − ρ)

W̃0(z)

Without setup delay or batches
su + e−su − 1

s/λ + X∗(s) − 1
(1 − z) u + zu − 1

(1 − z)/λ + X̃(z) − 1

4.3. Summary of the relationships
In the previous sections, we derived compact expressions for the value generating functions for the MX/G/1 and

GeoX/G/1 queues with setup delay D with respect to the waiting and sojourn time. Table 3 summarizes the results for
the waiting time. Without a setup delay, W∗e (s) = 1 and W̃e(z) = 1. Without batch arrivals, B = 1.

For the MX/G/1 queue, W∗
0 (s) denotes the LST of the waiting in the MX/G/1 queue without a setup delay, and

W∗e (s) is the LST of the additional waiting time due to setup delay We. These are given in (14) and (15), respectively.
Moreover, in every case it holds for the corresponding value generating function with respect to sojourn time that

vT (u, s) − vT (0, s) = (vW (u, s) − vW (0, s)) X∗(s).

For the discrete time GeoX/G/1 queue, W̃0(z) denotes the generating function of the waiting time distribution in a
system without a setup delay, and W̃e(z) corresponds to the additional waiting time due to the setup delay D. These
are given in (24) and (23). Similarly, for the sojourn time we always have

vT (u, z) − vT (0, z) = (vW (u, z) − vW (0, z)) X∗(z).

5. Batches with dependencies in service times

So far we have assumed that batch sizes are i.i.d. random variables and jobs have i.i.d. service times. However,
e.g., the proof of Proposition 2 does not require such assumptions; it is sufficient that the batches are i.i.d. random
tuples. Consequently, it is straightforward to generalize our results both in continuous and discrete time to allow the
service time of a job to depend, e.g., on its position in the batch and the batch size. For brevity, in what follows, we
discuss the continuous time case, but equivalent results hold also in the discrete time case. Our general batch structure
is defined using batch classes:

Definition 10 (Class-based batch structure) Class k ∈ K batches consist of b(k) jobs with service times

(X(k)
1 , . . . , X(k)

b(k)),

where the X(k)
i may depend on each other (and on k). Then we let K denote the class and B the size of a random batch,

B = b(K), so that the batch consists of jobs
(X(K)

1 , . . . , X(K)
b(K)).

Note that without loss of generality we can assume a constant batch size within each class. The set of batch classes
K can be a finite set, a countable set, or even uncountable, depending on the modeled scenario. Otherwise the batch
arrival process is as before, i.e., i.i.d. batches arrive according to a Poisson process with rate λb.

Let H(k) denote the total service time of class k batch,

H(k) ∼ X(k)
1 + . . . + X(k)

b(k).

The class-based batch structure induces a distribution for the total service time at the batch-level,

H = H(K) ∼ X(K)
1 + . . . + X(K)

b(K).

The total service times of consecutive batches, H1,H2, . . ., thus constitute a sequence of i.i.d. random variables,
Hi ∼ H, as before. As mentioned, the proofs given for Propositions 2 and 3 are general and hold also for the
class-based batch structure:
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Corollary 9 Propositions 2 and 3 hold also with the class-based batch structure, where the cost function may depend
both on the batch class k and the position of the job i in the batch, i ∈ 1, . . . , b(k).

The following two examples illustrate the possibilities of the class-based batch structure:

Example 13 (Short queries and long computing jobs) Suppose we have two types of batches. Type 1 batches con-
sist of 1, 2 or 3 short queries (i.i.d.), and Type 2 batches consist of a single long computing job, so K consists of 4
batch classes, (X1), (X1, X2), (X1, X2, X3), (Y), where Xi ∼ X correspond to short queries and Y to the computing job.

Note that we did not combine (X1) and (Y) for two reasons, even though B = 1 in both cases. First, the short queries
and long computing jobs may have different costs, and this information is carried in the batch class parameter. Second,
in case of parallel servers, the dispatching policies may be aware of the batch class.

Example 14 (DFT) Suppose that a server analyzes the submitted data files by computing the discrete Fourier trans-
form (DFT) at B points. This application can be modelled with batch arrivals consisting of B jobs with (approximately)
equal service times, (X, X, . . . , X), where the common random variable X is related to the length of the file. In the basic
case, we assume that X is independent of the batch size B and set K = B; the class of a batch is its size. However, we
permit the service times within each batch to be highly correlated, in contrast to the MX/G/1 queue with i.i.d. service
times.

Example 15 Consider a single server queue, where jobs arrive in batches according to a Poisson process with rate
λb and batches are defined by a class-based batch structure (the M/G/1 and MX/G/1 queues are thus special cases).
Without a setup delay, the value function with respect to waiting time, c1(w) = w, is the same as with the M/G/1 queue,

v1(u) − v1(0) =
λu2

2(1 − ρ)
,

which is interesting as the class-based batch structure allows dependencies between consecutive jobs. For example,
with B = 2 and (X1, X2) ∼ (Xodd, Xeven), the service time of every second job is from Xodd, and every other from Xeven.

Remark 1 Our general cost functions and general within-batch dependencies also allow us to include within-batch
cost-minimizing preprocessing. For example, we could have jobs with different costs and sizes, and assume that,
within a batch, they are preordered to minimize within-batch costs, i.e., by the cµ-rule.

Also with the class-based batches, we can, in principle, easily determine distributions for such quantities as Wb =

Wb(λb,H) and We = We(λb,D) that apply to every job in each batch. Referring to Eqs. (16) and (22), what remains is
the last factor corresponding to the intra-batch delay due to the jobs ahead in the same batch.

The intra-batch delays depend solely on the batch itself, not on the state of the system, and thus they are indepen-
dent of W, W0 and D. The intra-batch delay of the mth job of a class-k batch, referred to as the type (k,m) job, is given
by the partial sum

Ak,m ∼ X(k)
1 + . . . + X(k)

m , m = 1, . . . , b(k),

and A∗k,m(s) = E[e−s(X(k)
1 +...+X(k)

m )]. Note that Ak,b(k) ∼ H(k). Letting Ak,0 = 0, the LST of the intra-batch waiting and
sojourn times of a random class-k job are

W∗a,k(s) =
1

b(k)

b(k)−1∑
m=0

E[e−sAk,m ] =
1

b(k)

b(k)−1∑
m=0

A∗k,m(s),

T ∗a,k(s) =
1

b(k)

b(k)∑
m=1

E[e−sAk,m ] =
1

b(k)

b(k)∑
m=1

A∗k,m(s).

We are interested in the waiting and sojourn times of a random job, so need to weight each batch class by its size,

W∗a (s) =
E[b(K) ·W∗a,K(s)]

E[B]
=

E[A∗K,0(s) + . . . + A∗K,b(K)−1(s)]

E[B]
. (75)

T ∗a (s) =
E[b(K) · T ∗a,K(s)]

E[B]
=

E[A∗K,1(s) + . . . + A∗K,b(K)(s)]

E[B]
. (76)

The total waiting time of a random job in steady state thus decomposes into three independent terms, W j = Wb + We +

Wa, and the corresponding LST is W∗j (s) = W∗b (s) ·W∗e (s) ·W∗a (s). Similarly, for the total sojourn time experienced by
a random job, T j = Wb + We + Ta, and the corresponding LST is T ∗j (s) = W∗b (s) ·W∗e (s) · T ∗a (s).
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Remark 2 Let X denote the service time of a random job and X∗(s) its LST. Introducing dependencies into the service
times within a batch implies that Wa and X are no longer necessarily independent, and therefore T ∗a (s) may not be
equal to W∗a (s) · X∗(s).

A trivial example is a batch structure where the service time of the ith job of a batch is i. Then X and Wa are
directly related, Wa = 1 + 2 + . . . + (X − 1) = X(X − 1)/2 (a bijection).

Example 16 In the MX/G/1 queue (with K = B), service times (X(k)
1 , . . . , X(k)

k ) are i.i.d. for all batch sizes k. Thus
A∗k,m(s) = (X∗(s))m and (75) reduces to

W∗a (s) =
E[B · A∗B(s)]

E[B]
=

∑∞
k=1 P{B = k}

(
(X∗(s))0 + . . . + (X∗(s))k−1

)
E[B]

=

∑∞
k=1 P{B ≥ k} · X∗(s)k

X∗(s) · E[B]
= Ã(X∗(s)),

where Ã(z) is from (7), as expected. The same holds also for the discrete time GeoX/G/1 queue and sojourn times.

As mentioned earlier, our results generalize to the class-based batch structure. For example, Propositions 4 and 5
give the mean cost rates and the value generating functions with respect to the exponential waiting time and sojourn
time costs cw(w) = 1 − e−sw and ct(w, x) = 1 − e−s(w+x).

Corollary 10 Propositions 4 and 5 hold also for the class-based batch structure with

W∗0 (s) = W∗b (s) ·W∗a (s), and T ∗0 (s) = W∗b (s) · T ∗a (s),

where W∗
a (s) and T ∗a (s) are now given by (75) and (76).

We can also define job-specific holding costs separately for each job of batch class k.
We now return to the two example batch structures introduced at the start of the section:

Example 17 (short queries and long computing jobs) Let B̃(z) denote the generating function for the number of
short queries in a type 1 batch, and suppose that the fraction of type 1 batches is p. Then the LST for the total service
time of a batch is

H∗(s) = p · B̃(X∗(s)) + (1 − p) · Y∗(s).

For the intra-batch waiting time we have

W∗a (s) =
1

1 + p(E[B] − 1)

[
1 + p

(
E[B]Ã(X∗(s)) − 1

)]
,

where Ã(X∗(s) corresponds to the number of queries ahead of a random (short) query in the same batch, see (7).

Example 18 (DFT) Define
A∗k,m(s) = E[e−smX] = X∗(sm),

so

H∗(s) = E[X∗(sK)] =
∑

k

P{B = k} · X∗(ks),

W∗a (s) =
E[B · A∗B(s)]

E[B]
=

1
E[B]

∑
k

P{B = k} (X∗(0) + . . . + X∗((k − 1)s)) =
1

E[B]

∑
k

P{B ≥ k} · X∗((k − 1)s).

Note that with the i.i.d. service times of the MX/G/1 queue, according to (7) and (12), we have

H∗(s) =
∑

k

P{B = k} · X∗(s)k, and W∗
a (s) =

1
E[B]

∑
k

P{B ≥ k} · X∗(s)k−1.

Table 4 shows the mean and variance of H and Wa when B ∼ U(1, 2, 3) for the three cases where X is a constant,
uniformly distributed and exponentially distributed, for the two cases of i.i.d. Xi’s and perfectly correlated (replicated)
Xi’s (X1 = X2 . . .). With i.i.d. service times, the system benefits from statistical multiplexing; it is unlikely that all three
jobs are “long”.
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Table 4: The variance of H and Wa with different service time distributions X with E[X] = m when B ∼ U(1, 2, 3) and the jobs are i.i.d. or replicated
as in Example 18. The means remain the same, E[H] = E[B] · E[X] = 2m and E[Wa] = (2/3)m, but replication increases the variances as expected.

Sample realizations:

i.i.d. replicated

1st batch:
2nd batch:

X1X1X1

X2X2

X1X2X3

X4X5

Job’s service time X V[H] V[Wa]
Distribution X∗(s) i.i.d. replicate i.i.d. replicate

Const(m) e−sm 2m2

3
2m2

3
5m2

9
5m2

9

U(0, 2m)
1 − e−sm

sm
4m2

3
20m2

9
7m2

9
8m2

9

Exp(µ), m =
1
µ

1
1 + sm

8m2

3
16m2

3
11m2

9
14m2

9

6. Number-aware value functions

So far, we have assumed that exact job size information is available. This is a justified assumption in many modern
applications, where, e.g., file sizes are known in advance. However, traditionally it has been more common to assume
that only the number of jobs present is known, a scenario referred to as the number-aware setting. In this case, it is
common to assume exponentially or geometrically distributed service times to take advantage of the lack of memory
property.

By unconditioning, the size-aware results can be transformed to cases where only inaccurate information about the
service times and setup delay are available (e.g., we may have class-specific service time distributions). In particular,
one can easily obtain the number-aware value functions from the size-aware value functions. For example, in [27],
the size-aware value functions for the M/G/1-FCFS and LCFS queues (without setup delay) are transformed to the
corresponding number-aware value functions when the cost structure is simply the sojourn time, c(w, x) = w + x. In
this section, we derive the number-aware value functions for the MX/G/1 and GeoX/G/1 queues with setup delay and
exponential cost functions, from which, e.g., arbitrary polynomial cost functions follow as special cases.

In the number-aware case, the backlog is a random variable,

U = X1 + . . . + Xn−1 + Rt,

where n denotes the number of jobs in the queue, and Rt is the residual service time of a job given that it has already
been in service for time t, Rt ∼ (X − t | X > t). With arbitrary service time distributions, this leads to an age-based
system where the conditional distribution Rt needs to be evaluated. For the MX/G/1 queue, the value generating
functions, given in (50) and (58), depend on su and e−su, for which we have

E[sU] = s ((n − 1)E[X] + E[Rt]) ,

and
E[e−sU] = [X∗(s)]n−1 · R∗t (s),

with similar expressions for the GeoX/G/1 queue.
For simplicity, we assume no setup delay and memoryless (exponential or geometric) service time distributions,

so we have the MX/M/1 and GeoX/Geo/1 queues, and in particular, Rt ∼ X in both cases.

6.1. MX/M/1 Queue

For the MX/M/1 queue, we now have

X∗(s) = µ/(s + µ),
E[sU] = sn/µ,

E[e−sU] = (X∗(s))n =

[
µ

s + µ

]n

.

Let us consider the exponential cost function of the waiting time. For the MX/M/1 queue, (54) becomes

vW (n, s) − vW (0, s) =

([
µ

s+µ

]n
+ sn

µ
− 1

)
E[B] Ã(µ/(s + µ))

s/λb + B̃(µ/(s + µ)) − 1
. (77)
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Without batch arrivals, i.e., for the basic M/M/1 queue, we have

vW (n, s) − vW (0, s) =
λ(s + µ)

s(s+µ−λ)

([
µ

s + µ

]n

+
sn
µ
− 1

)
, (78)

and

vT (n, s) − vT (0, s) =
λµ

s(s+µ−λ)

([
µ

s + µ

]n

+
sn
µ
− 1

)
. (79)

The admission cost, e.g., with respect to the exponential cost of the sojourn time is

aT (n, s) = E[cT (n, X, s)] + vT (n + 1, s) − vT (n, s),

which reduces to

aT (n, s) =
s + µ − µ

(
µ

s+µ

)n

s + µ − λ
= 1 +

λ − µ
(
µ

s+µ

)n

s + µ − λ
. (80)

The above is the admission cost to the (number-aware) M/M/1 queue with the exponential cost of the sojourn time.

Example 19 The number-aware M/M/1 queue with an arbitrary cost function is studied also in [9]. Instead of deriving
the value function, the admission cost, a(i) , c(i) + v(i + 1)− v(i), involving an infinite sum, is derived directly [9, Eq.
(8)]. An explicit closed-form admission cost is then derived for some example cases including the squared sojourn
time, c(t) = t2. From (80), we obtain for the linear cost of the sojourn time c(t) = t,

aT (n) = −

[
∂

∂s
aT (n, s)

]
s=0

=
n + 1
µ − λ

,

whereas for c(t) = t2, we have

aT 2 (n) = −

[
∂2

∂2s
aT (n, s)

]
s=0

=
(n + 1)(n(1 − ρ) + 2)

(µ − λ)2 ,

which agrees with the admission cost given in [9, Example 2].

6.2. GeoX/Geo/1 Queue

For the equivalent discrete-time GeoX/Geo1/1 system we have

X̃(z) =
qz

1 − z + qz
,

E[U] =
n
q
,

E[zU] = [X̃(z)]n =

[
qz

1 − z + qz

]n

.

Substituting these into (70) yields the number-aware value function with respect to the number-aware exponential cost
function of the waiting time (62),

vW (n, z) − vW (0, z) =
((1 − z) n

q +
[

qz
1−z+qz

]n
− 1) Ã

(
qz

1−z+qz

)
(1 − z)/λb + B̃

(
qz

1−z+qz

)
− 1

.

Without batch arrivals (B = 1) one obtains the Geo/Geo/1 queue and the expression simplifies further yielding,

vW (n, z) − vW (0, z) =
λ(1 − z + qz)

[
(1 − z) n

q +
[

qz
1−z+qz

]n
− 1

]
(1 − z)(1 − z + qz − λ)

,

vT (n, z) − vT (0, z) =
λqz

[
(1 − z) n

q +
[

qz
1−z+qz

]n
− 1

]
(1 − z)(1 − z + qz − λ)

.
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The (expected) immediate cost with respect to the exponential cost of the sojourn time is

cT (n, z) , E[cT (U, X, z) | n] = E[1 − z(U+X) | n] = 1 −
[

qz
1 − z + qz

]n+1

,

and the corresponding admission cost, aT (n, z) = cT (n, z) + vT (n + 1, z) − vT (n, z), is then

aT (n, z) =
1 − z + qz − λ(1 − z) − qz

[
qz

1−q+qz

]n

1 − z + qz − λ
= 1 +

λz − qz
[

qz
1−q+qz

]n

1 − z + qz − λ
.

Example 20 For the (linear) cost of the sojourn time, c(t) = t, the admission cost in the number-aware Geo/Geo/1
queue (without setup delay) is

aT (n) = −

(
∂

∂z
aT (n, z)

)
z=1

=
1 + n − λ

q − λ
.

and for the quadratic cost of the sojourn time, c(t) = t2, we have

aT 2 (n) = −

(
∂

∂z
z
∂

∂z
aT (n, z)

)
z=1

=
(1 − ρ)n(n + 1) + (2 − q − λ)(n + 1 − λ)

(q − λ)2 .

As mentioned, the continuous time system can obtained by an appropriate scaling at the limit where the time step
tends to zero. More specifically, for example by scaling the arrival and service rates by δ,

λ = δλ, q = δµ,

and the admission costs by δ and δ2, respectively, the above results yield the corresponding admission costs for the
M/M/1 queue (see Example 19) when δ→ 0.

7. Applications

In this section, we show how the new results can be utilized. As it is obvious by now, all our results are similar
in continuous and discrete time. Thus, for simplicity, in this section we consider only the continuous time MX/G/1
queue and leave the discrete-time system for the reader.

7.1. To switch off, or not to switch off

Let us first discuss briefly switching-off policies [31]. We determine when an idle server should be switched
off, and when it should be kept running. Inherently, this is a question about the energy-performance trade-off. By
switching off, we hope to save some energy, but at the same time, response times increase because of the setup delay.
We let e denote the cost of energy per unit time incurred when the server is running. The mean energy cost if the
server is switched off whenever idle follows immediately from (9),

c̄e = (1 − p0)e =
ρ + λb E[D]
1 + λb E[D]

e. (81)

The value function with respect to energy consumption is [4],

ve(u) − ve(0) =
u

1 + λb E[D]
e. (82)

The QoS is characterized by an arbitrary cost function, e.g., a polynomial

cW (w) =
∑

i

aiwi.

Then let the random variable C(w) denote the total QoS cost incurred by a batch,

CW (w) , cW (w) + cW (w + X1) + . . . + cW (w + X1 + . . . + XB−1).

The optimal switch off decision can be deduced in (at least) three different ways:
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1. The straightforward method is to compute the mean cost c̄ = c̄e + c̄W for system (i) that keeps the server running
and thus avoids setup delays, and system (ii) that switches the server off when idle and thereby exposes some
jobs to the ensuing setup delay. Given the mean costs, one can simply choose the strategy that has lower mean
cost.

2. Suppose that we decide to keep the server always running, and have computed the corresponding value function
for the whole system (without setup delay), denoted by v0(u). The energy consumption is fixed at a constant
level e, and it thus does not show up in the value function. Then consider deviating from the standard action by
switching the server off for one idle period. Switching off decreases the expected costs if

E[C(D) −C(0) + v0(D + H) − v0(H)] <
e
λb
.

3. Alternatively, let v0(u) denote the value function of the system when the policy is to switch the server off

whenever it becomes idle. In this case, the energy consumption, given by (82), is included explicitly in the value
function v0(u). Then consider keeping the server running when the last customer exits, which is equivalent to
keeping the backlog artificially in state u = ε by feeding very small (infinitesimal) virtual jobs until the next
real job arrives. Thus, keeping the server running is advantageous if v0(ε) < v0(0), which yields

v0(ε) − v0(0)
ε

< 0,

and as ε → 0, the condition reduces to checking the sign of the derivative at u = 0,[
∂

∂u
v0(u)

]
u=0

< 0.

Considering the weighted cost model for jobs, with the aid of the value generating function (50), we can write
an explicit expression for keeping the server running, ∂∂u

∑
i

ai

 ∂i

∂si v(u, s)


s=0


u=0

>
e

1 + λb E[D]
.

The summation on the left-hand side is a generic cost function related to the QoE as perceived by jobs, and the
term on the right-hand side with the constant factor e corresponds to the energy consumption.

In each case above, we can deduce the (same) critical cost for energy above which the server should be switched off

when idle. Note that in the latter two cases, we only need to analyze one system, whereas with the first option one
needs to compute the mean cost for two systems. Because we have Poisson arrivals we need not consider policies that
switch a server off and switch it back on again before there is an arrival. Similarly, we can ignore policies that delay
the switch on after a job has arrived. Our analysis also extends easily to the case where the energy cost depends on
whether the server is working or is setting up.

7.2. Dispatching policies
The value functions for single-server queues are also useful in the context of (heterogeneous) parallel servers

(see Figure 1). In particular, they can be used to develop efficient dispatching (routing) policies by carrying out one
policy improvement step. This method, first proposed by Norman [48], has been used in numerous papers, see, e.g.,
[33, 49, 23, 22], and [14, Sec.10.3. and 11.5]. The basic steps are as follows (similarly in discrete time):

1. Choose a static basic dispatching policy α0 that splits the Poisson arrival process to to different servers so that
each of them receives jobs according to a (server-specific) Poisson batch arrival process.

2. With α0 the system then decomposes into n independent parallel queues that can be analyzed separately, and
the value function of the whole system is the sum of queue-specific value functions,

v(z) = v(1)(u1) + . . . + v(n)(un),

where the backlogs, z = (u1, . . . , un), are a sufficient state description in our setting.
3. One step of policy improvement yields a new policy. Let ξ = ξ(x) denote a routing decision that assigns all jobs

of a batch x in some order to the servers, c(z, ξ) the corresponding immediate cost, and z ⊕ ξ the resulting state.
Then

αFPI(z, x) ∈ arg min
ξ

(c(z, ξ) + v(z ⊕ ξ) − v(z)) ,

where αFPI is the set of servers chosen by the FPI policy. Ties can be resolved, e.g., at random. Note that v(z) is
a common constant for all actions and can be omitted.
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The basic dispatching policy may depend on batch size B, or any batch-specific parameters such as class, weight
or priority. The basic policy can also split batches among several servers (cf. [50]) as long as the decision is static and
each server receives a Poisson batch arrival process. One such example is the size-interval-task-assignment (SITA)
policy that dispatches, e.g., all short jobs to server 1 and long jobs to server 2. SITA is often (but not always) a
good policy with FCFS (cf. [51]). Similarly, a random Bernoulli split of jobs in a batch, instead of the whole batch,
decreases the burstiness in the arrival process to each server, which in turn tends to improve the performance with
FCFS. However, the static policy may not depend on the state of the system (i.e., the backlogs at the servers), or the
parameters of the batch in such a way that the resulting arrival process to some server would not be a Poisson batch
arrival process.

Value functions for a single queue thus allow us to carry out the one policy improvement step to determine a
policy that uses server-specific state information. It is often difficult to go further, i.e., to carry out a second policy
improvement step, because the first step already yields a dynamic policy for which it is significantly harder to compute
the value function than for a single queue. In this case, one can consider the lookahead approach, where the tentative
action deviating from the basic policy includes also the next arriving job(s) [30]. For numerical examples, we refer to
the cited publications.

8. Conclusions

We have studied continuous and discrete time queues with general batch arrivals subject to general cost structures.
This includes the MX/G/1 and GeoX/G/1 queues as special cases. We obtained compact closed-form expressions for
the mean costs and the value functions defined solely in terms of the arrival intensity, the batch-specific generating
functions and either the LST (for MX/G/1) or z-transform (for GeoX/G/1) of the service time distribution. These cost
functions include many often used cost structures such as the waiting time, the slowdown, and energy consumption.
We refer to these value functions as value generating functions, because, as with, e.g., moment generating functions,
they summarize whole families of cost structures and their corresponding value functions. Our results, with convenient
simple expressions for the mean costs and value functions, serve as building blocks for more complex scenarios that
attempt to optimize dynamic actions, e.g., for dispatching jobs to parallel servers. Finally, it is worth noting that it is
possible to introduce dependencies and different service time distributions for jobs in a batch with very little additional
analysis.
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Appendix A. Proofs

Proof: (Proposition 1) We can prove (19), giving the generating function of the waiting time W in the Geo/G/1 queue
with a random setup delay D, by using the exponential cost function of the waiting time as they share the same term,
zw. Thus, suppose the costs are incurred according to (62), cW (w, z) = 1 − zw. From Proposition 3, it follows that the
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corresponding value function satisfies the following:

vW (u, z) − vW (0, z) =
(1 − z) u W̃(z) − (1 − zu) W̃0(z)

(1 − z)(1 − ρ)/λ
. (A.1)

Consider next the state where the system is empty, which is the only state where the setup delay takes place. The
average time the system is empty is 1/λ, and by dynamic programming,

vW (0, z) =
1
λ
· (0 − r) + E[c(D)] + E[vW (D + X, z)],

where r = λE[c(W)] denotes the mean cost rate, yielding

E[vW (D + X, z) − vW (0, z)] = E[c(W) − c(D)]. (A.2)

Combining (A.1) and (A.2), and substituting W̃(z) = W̃e(z) · W̃0(z), where W̃0(z) is given by (18), gives, after some
algebraic manipulation,

W̃e(z) =
(1 − z − λ)D̃(z) + λ

(1 − z)(1 + λE[D])
.

�
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