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Abstract

Queueing is a common praxis in banks, hospitals and transportation, just to name a few. One common performance metric is the
mean sojourn time. However, humans experience waiting time in a more complex manner – they dislike being the last in line. We
study queueing systems subject to such a cost structure. For the single M/G/1 queue, we derive the corresponding mean costs, value
functions and admission costs, which are then applied to route customers to parallel servers.
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1. Introduction

Many server systems for (human) customers involve queues.
Parallel servers are used when the capacity of a single server is
insufficient. A typical example is service counters, e.g., at air-
ports or shopping centers, call centers (help desks) and check-
out counters. When each server has its own queue and incom-
ing customers are assigned immediately upon arrival to one of
them, the corresponding model is known as the dispatching sys-
tem.

The most common queueing discipline for a single server is
the first-come-first-served (FCFS). It is seen as a fair queue-
ing discipline as customers depart in the same order as they
arrived – no one is allowed to cut the queue [1]. In addition
to fairness, one is often concerned also about the performance,
for which the classical metric has been the mean sojourn time.
According to Pollazcek-Khinchine’s mean value formula, the
mean sojourn time with Poisson arrivals and FCFS depends on
the second moment of the service time. Consequently, FCFS
does a very poor job when service times vary a lot. The optimal
scheduling for the mean sojourn time is known as the shortest-
remaining-processing-time (SRPT) [2].

So we can say that FCFS promotes fairness and SRPT min-
imizes the mean sojourn time. However, humans experience
waiting systems in a more complex manner especially when
they can observe their own position in the queue. It turns out
that they simply dislike being the last in line [3]. In this pa-
per, we study queueing systems with such a cost structure in
the framework of Markov decision processes. First we analyze
the single M/G/1 queue, and then apply the new results to de-
rive efficient (heuristic) dispatching policies for parallel queues
that aim to minimize the annoyance the customers experience
for being the last in line.
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Figure 1: The customer being last in line finds the waiting time most unpleasent.

2. Single M/G/1 Queue with Last-in-Line Costs

In this section, we consider the single M/G/1 queue with
FCFS scheduling, i.e., customers arrive according to a Poisson
process with rate λ, and their service times Xi are i.i.d. with a
general distribution Xi ∼ X. The queue is stable whenever the
offered load, ρ = λE[X], is less than one.

We focus on the so-called last-in-line cost structure, where a
customer being last in line incurs costs at some rate, i.e., until
the next customer arrives, or he himself enters the service. An
example system is depicted in Figure 1. We let WL denote the
time a customer is last in line, and refer to this time interval as
the last-in-line time. We consider three cases:

1. Customers have the same unit holding cost rate while be-
ing the last in line, and the total cost is thus WL.

2. The holding cost rates are customer-specific i.i.d. random
variables, Hi ∼ H, that can reflect, e.g., a service class (cf.
high priority customers). The total cost is H ·WL.

3. Holding cost rate increases in time so that the total cost is
(WL)k for some integer k ≥ 2.

In what follows, we give exact expressions for the respective
mean costs E[WL], E[H] · E[WL] and E[(WL)k], and derive the
corresponding value functions and admission costs.

2.1. Linear costs for the time being last in line
First we assume that all customers have equal cost rate,

h = 1, at which they incur costs while being last in line. Equiv-
alently, each queue incurs costs at unit rate whenever more than
one customer is present (i.e., whenever someone is waiting).
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Note that this is different from incurring costs at a constant
rate whenever a server is busy, which is an elementary model
for energy consumption. In fact, for energy consumption, the
service order is irrelevant. In contrast, our cost structure is more
intricate also in this sense. For example, given two customers,
it would be better to serve first the customer with a shorter ser-
vice time, as then the system will stop incurring costs earlier.
In fact, it is easy to show that for every sample path, the op-
timal scheduling serves the customer with the longest service
time last. Other customers can be served in any order. In this
sense, the optimal scheduling resembles SRPT, but has less con-
straints. The same principle can be applied also to systems with
multiple servers (without arrivals).

However, in our model customers arrive according to Poisson
process and are served in FCFS order, which makes the situa-
tion more challenging. First, the current state affects the waiting
times of the later arriving customers, and second, the next ar-
riving customer affects the costs incurred by the customer who
is currently last in line.

The complete state (size-aware) description of the queue is
(x1, x2, . . . , xm), where xi denotes the (remaining) service time
of customer i with the convention that customer 1 (if any) is
currently receiving service, and customer m is last in line. For
our cost structure, a sufficient state description is (u,w∗), where
w∗ = x1 + . . . + xm−1 is the amount of work in the queue ahead
of the customer currently being last in line, and u = w∗ + xm is
the total amount of work (backlog).

We define the value function (without discounting) as the
limiting expected cost difference between a system starting in
state (u,w∗), and the system in steady-state:

v(u,w∗) , E[RL] + E[
∞∑

i=1

(
W (i)

L − E[WL]
)
], (1)

where RL denotes the remaining last-in-line time of the cus-
tomer currently in that position, and W (i)

L denotes the time the
ith new customer will be last in line. Clearly, RL depends only
on w∗, whereas the W (i)

L depend only on u.

Proposition 1. The mean time being last in line in the M/G/1
queue is

E[WL] = c̄ =
1
λ
−

1 − ρ

λ X̃(λ)
, (2)

and the corresponding value function satisfies

v(u,w∗) − v(0, 0) =
1 − e−λw∗

λ
+
λu + e−λu − 1

λ X̃(λ)
, (3)

where X̃(s) denotes the Laplace-Stieltjes transform (LST) of the
service time distribution, X̃(s) = E[e−sX].

Proof: First we introduce a slightly modified cost structure,
where arriving customers “pay a fee” immediately upon arrival
according to their expected time to be last in line. In this case,
a sufficient state description is u, and the corresponding “en-
trance fee” is

c(u) = E[WL | U = u].

With Poisson arrival process, we can compute c(u) exactly,

c(u) =

∫ u

0
t · λe−λt dt + e−λuu =

1 − e−λu

λ
. (4)

This modification does not change the mean behavior, i.e., on
average each customer incurs the same cost,

E[WL] = E[E[WL | U]] = E[c(U)].

However, in each sample path, customers may benefit or suffer
from the modification depending on how “lucky” they are. As
the customer currently last in line, if any, has already “paid the
entrance fee”, the value function with the modified costs is

ṽ(u) ,
∞∑

i=1

(
E[W (i)

L ] − E[WL]
)
. (5)

and a comparison with (1) shows that v(u,w∗) = E[RL] + ṽ(u).
Using (4), we obtain an expression for the first term,

E[RL] = c(w∗) =
1 − e−λw∗

λ
. (6)

It turns out that the cost c(u) in (4) is essentially the same as (16)
in [4], and substituting s = λ into (29) and (30) in [4], yields
expressions for the mean cost E[c(U)] and the value function
ṽ(u); E[c(U)] is (2), and ṽ(u) is the second term in (3). �

For more details, see [4] and the references therein.
A queueing system is considered to be robust if its perfor-

mance depends only on the mean values. For example, the
mean sojourn time with the processor sharing (PS) is insensi-
tive to the service time distribution. Unfortunately, (2) implies
that with the last in line metric the situation is the opposite:

Corollary 1. The mean time being last in line E[WL] in the
M/G/1 queue is not insensitive to the service time distribution.

Example 1. In the M/M/1 queue, X̃(s) = µ/(µ+s) and the mean
cost rate is λc̄ = ρ2. This obviously is the same as the probabil-
ity of having two or more customers in the M/M/1 queue.

Let z = (u,w∗) denote the state of the queue, where u is
the current backlog and w∗ the remaining last-in-line time of
the customer currently last in line (if any). The (marginal) ad-
mission cost of a customer with service time x is the expected
increase in the infinite time-horizon costs,

a(z, x) = v(u + x, u) − v(u,w∗),

which, with the last-in-line costs, reduces to

a(z, x) =
e−λw∗ − e−λu

λ
+
λx + e−λu(e−λx − 1)

λ X̃(λ)
. (7)

Given no customer is waiting, w∗ = 0. If the system is empty,
then also u = 0.

Example 2. The admission cost to the M/M/1 queue is

a(z, x) =
e−λw∗ − e−λu

λ
+
λx + e−λu(e−λx − 1)

λ
(1 + ρ),

whereas in the M/D/1 queue, w∗ = max(0, u − d), and

a(u) = deρ +
e−λw∗ − e−λ(u−d)

λ
.
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2.2. Customer-specific holding cost rates

Let us next consider the model with customer-specific hold-
ing cost rates Hi, which are i.i.d. random variables, Hi ∼ H.
Similarly as the service times, the holding cost rate becomes
known upon arrival. That is, while customer i is waiting last in
line, costs are incurred at rate hi, and the customers j = i+1, . . .
arriving in future have random i.i.d. cost rates H j ∼ H.

The mean cost per customer follows immediately from (2),

c̄ = E[H] · E[WL] =
E[H]
λ

(
1 −

1 − ρ

X̃(λ)

)
.

Let z = (u,w∗, h∗) denote the current state, where the starred
quantities refer to the customer currently last in line. Then re-
call that the first term on the right-hand side of (3) corresponds
to the customer currently last in line (if any), and the second
term to the customers arriving in the future. Therefore, the
value function with the holding costs satisfies

v(u,w∗, h∗) − v(0) =
1 − e−λw∗

λ
· h∗ +

λu + e−λu − 1

λ X̃(λ)
E[H]. (8)

The admission cost of a customer with service time x and hold-
ing cost rate h in state z is then

a(z, x, h) = v(u + x, u, h) − v(u,w∗, h∗),

yielding

a(z, x, h) =

(
1 − e−λu

)
h −

(
1 − e−λw∗

)
h∗

λ

+
λx + e−λu(e−λx − 1)

λ X̃(λ)
· E[H].

(9)

If no one is waiting last in line, then w∗ = h∗ = 0.
Interestingly, with some cost rates the admission cost can be

negative. Informally, this means that an unhappy customer cur-
rently last in line gets replaced by someone else who does not
mind as much for being the last.

2.3. Non-linear costs for being last in line

Next we assume that the cost for the last-in-line time is
(WL)k, where k is some positive integer. Note that k = 1 corre-
sponds to the unit cost rate (Section 2.1), whereas with k ≥ 2,
the cost rate increases in time to power of k−1. Such non-linear
costs can be a useful model for customers who slowly become
more anxious if they remain last in line for a longer period of
time. In this case, the expected cost for joining the M/G/1 queue
in state u is

ck(u) = E[(WL)k | U = u] =

∫ u

0
tkλe−λt dt + uke−λu.

Integration by parts yields an explicit expression,

ck(u) =
k!
λk

1 − e−λu
k−1∑
j=0

(λu) j

j!

 , k = 1, 2, . . . (10)
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Figure 2: Expected normalized costs c̃k(u) for k = 1, . . . , 5.

where λu corresponds to the mean number of customers arriv-
ing before the new customer enters service. Note that ck(u) is
a strictly increasing and bounded, limu→∞ ck(u) = k!/λk. For
comparison, with the waiting time metric, cW (u) = u, and the
cost function is unbounded, limu→∞ cW (u) = ∞.

For visualization purposes, we define normalized costs as,

c̃k(u) ,
λk

k!
ck(u) = 1 − e−λu

k−1∑
j=0

(λu) j

j!
. (11)

Figure 2 depicts c̃k(u) for k = 1, . . . , 5.

Proposition 2. The kth moment of the time being last in line in
the M/G/1 queue is

E[(WL)k] = c̄k =
k!
λk

1 − k−1∑
j=0

(−λ) j

j!
W̃ ( j)(λ)

 , (12)

where W̃(s) is the LST of the waiting time W.

Proof: Consider the M/G/1 queue subject to the modified
costs ck(u). Due to PASTA, E[(WL)k] = E[ck(W)], and

E[ck(W)] = E

 k!
λk

1 − e−λW
k−1∑
j=0

(λW) j

j!




=
k!
λk

1 − k−1∑
j=0

λ j

j!
E[W je−λW ]

 .
Then we recall that

E[Xke−sX] = (−1)kX̃(k)(s), (13)

where X̃(k)(s) denotes the kth derivative of the LST of the ran-
dom variable X. Therefore,

E[(WL)k] = E[ck(W)] =
k!
λk

[
1 −

k−1∑
j=0

(−λ) j

j!
W̃ ( j)(λ)

]
.

�

Note that (12) reduces to (2) when k = 1, as expected.

Example 3. The kth moment of time being last in line in the
M/M/1 queue is E[Wk

L] = ρk!/µk. If considering the normalized
costs (11), then the mean cost is simply c̄k = ρk+1.
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The value function with the general costs depends also on the
time a customer has already spent waiting last in line (age) de-
noted by ∆. In this case, a sufficient state description is the triple
z = (u,w∗,∆), and the corresponding value function (without
discounting) is

vk(z) , E[(∆ + RL)k − ∆k] +

∞∑
j=1

(
E[(W ( j)

L )k − E[(WL)k]]
)
.

The first term corresponds to the mean cost the customer cur-
rently last in line will incur, and it depends on ∆ and w∗. The
summation corresponds to the mean costs customers arriving in
the future will incur, which depends solely on u.

First we consider the modified cost structure where each cus-
tomer pays according to their expected costs upon arrival.

Lemma 1. The value function for the M/G/1 queue, where the
cost incurred upon arrival is ck(u) = E[(WL)k | U = u], satisfies

ṽk(u) − ṽk(0) =

uk!
(1 − ρ)λk−1

k−1∑
j=0

[ (−λ) j

j!

(
W̃ ( j)(λ) −

j∑
v=0

(
j
v

)
W̃ ( j−v)(λ)Ỹ (v)(λ)

)]
,

(14)

where W̃(s) is the LST of the waiting time in the M/G/1 queue
and Ỹ(s) = (1−e−su)/(su) is the LST of the uniformly distributed
random variable Y ∼ U(0, u).

Proof: We utilize a general expression characterizing the
value functions of the M/G/1 queue subject to arbitrary cost
function c(u) incurred upon arrival [4, Proposition 1],

ṽ(u) − ṽ(0) =
λu

1 − ρ
E[c(W + Y) − c(W)],

where W denotes the waiting time in equilibrium, Y ∼ U(0, u),
and W and Y are independent. Substituting (10) gives

ṽk(u) − ṽk(0) =

uk!
(1 − ρ)λk−1 E

[
e−λW

k−1∑
j=0

(λW) j

j!
− e−λ(W+Y)

k−1∑
j=0

(λ(W + Y)) j

j!

]
,

where the expectation can be written as

E
[
e−λW

k−1∑
j=0

λ j

j!

(
W j − e−λY (W + Y) j

)]
. (15)

After substituting (13) into (15) and utilizing the binomial the-
orem, the expectation reduces to

k−1∑
j=0

(−λ) j

j!

W̃ ( j)(λ) −
j∑

v=0

(
j
v

)
W̃ ( j−v)(λ) · Ỹ (v)(λ)

 ,
which completes the proof. �

Explicit expressions for value functions are obtained by sub-
stituting W̃ ( j)(λ) and Ỹ (v)(λ) into (14). The Pollaczek-Khinchine
transform formula for the waiting time,

W̃(s) =
s(1 − ρ)

s − λ(1 − X̃(s))
,

gives the former, and Ỹ(s) is given in Lemma 1.

λ

Flexible
customers

Queues

ν4

ν3

ν2

ν1λ1
Inflexible customers

Dispatcher

Figure 3: Parallel queues where customers being last in line incur costs.

Proposition 3. The value function for the non-linear last-in-
line costs of form Wk

L in the M/G/1 queue satisfies

v(z) =

 k∑
j=0

(
k
j

)
∆k− jc j(w∗) − ∆k

 + ṽk(u), (16)

where z = (u,w∗,∆) and ṽk(u) is given in Lemma 1.

Proof: The mean cost the customer currently last in line will
incur is E[(∆ + RL)k]−∆k, which explains the first term in (16).
The second term is again equal to the value function with the
modified cost structure, given in (14). �

The admission cost of a new customer with service time x is

ak(z, x) = vk(z′) − vk(z), (17)

where z = (u,w∗,∆) is the current state and z′ = (u + x, u, 0) the
new state. Similarly as in Section 2.2, it is straightforward to
generalize these results with customer-specific coefficients Hi.
In fact, even the form of holding cost structure (e.g., linear or
quadratic) may depend on the customer or his class.

3. Model for Dispatching System

In this section, we consider a system where the service is pro-
vided by a set of parallel servers each having their own queue
(cf. queues at supermarkets, road toll stations, etc.). The model
is depicted in Figure 3 and is as follows:

• The system comprises K parallel FCFS servers with ser-
vice rates ν1, . . . , νK .

• Customers arrive according to a Poisson process with rate
λ, their service demands are i.i.d. with a general distribu-
tion, Xi ∼ X, and they are routed immediately upon arrival
to one of the servers. Service time of customer i in server
j would be Xi/ν j.

• Customers incur costs at customer-specific cost rates, Hi ∼

H, while being last in line.

• Customers’ service demands and cost rates (e.g. service
class) are observed upon arrival, and the dispatching deci-
sion can utilize this information.

In general case, each server j may additionally have their
own stream of inflexible customers (see λ1 in Figure 3). Their
service demands and cost rates are also i.i.d., but may obey dif-
ferent distributions than those of flexible customers. Moreover,
costs incurred may be non-linear functions of the time spent as
the last in line, as discussed in the previous section.
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3.1. Last-Place-Aversive Dispatching
Next we utilize the admission costs (7), (9) and (17) to de-

velop efficient, state-aware, dispatching policies that aim to
minimize the costs due to being last in line.

First we note that our cost structure is prone to instability
issues. To illustrate this, suppose we have two servers, moder-
ately high load, and two types of customers. A large fraction of
customers have a very low cost rate h1, and a small fraction has
a very high cost rate h2. In this case, no matter how long one
queue is, it seems intuitively beneficial to still route all “cheap
customers” to the long queue as the cost rate remains at h1. The
other queue is then dedicated to the “valuable customers” who
basically experience no queueing, and thus the mean cost rate
is about h1 even though one queue is unstable.

This behavior is an artifact of our simplistic cost structure
that only cares about who is last in line. The obvious fix is
to include another term to the cost structure, such as the mean
sojourn time, to penalize for the excessively long queues. The
corresponding value functions can be found, e.g., from [5] and
[6], where in latter servers may also have the so-called setup
delay when a new busy period starts. The value function for the
M/G/1 queue, with customer-specific holding costs Ht for the
sojourn time, satisfies

vt(u) − vt(0) =
λu2

2(1 − ρ)
E[Ht]. (18)

The corresponding admission cost is

at(u, x, ht) = ht(u + x) +
λ(2ux + x2)

2(1 − ρ)
E[Ht], (19)

where x and ht denote the service time and the holding cost
of the new customer. The value function for the waiting time
(before the service starts) is essentially the same, whereas the
admission cost is

aw(u, x, hw) = hwu +
λ(2ux + x2)

2(1 − ρ)
E[Hw], (20)

where hw and Hw correspond to holding costs while waiting in
the queue. We could also define separate holding cost rates for
the three stages: (i) when waiting last in line, (ii) when wait-
ing otherwise, and (iii) when in service. When a cost structure
consists of several terms, the corresponding mean costs, value
functions and admission costs are simply added together.

The standard MDP procedure to improve any given (static)
policy is as follows (see, e.g., [7]):

1. Assume a static basic dispatching policy α0, where the dis-
patching decision may depend only on the customer itself
(e.g., its class, size or holding cost).

2. With α0, the system decomposes into K independent par-
allel M/G/1 queues, and the value function of the whole
system is the sum of the queue-specific value functions,

v(z) =

K∑
i=1

v(i)(zi),

where z = (z1, . . . , zK) defines the state of each server.

3. The first policy iteration step (FPI) yields a new (dy-
namic) policy, which reduces to choosing the server with
the smallest admission cost

α(z, x) = argmin
i
{a(i)(zi, x)},

where x defines the service demand x and possible holding
costs and other parameters of the customer, and a(i)(zi, x)
is the admission cost to server i. Ties are resolved, e.g., at
random.

4. Numerical Example

In this section, we compare the FPI-based policies to some
well-known heuristics. Suppose we have two identical servers,
ν1 = ν2 = 1, the service demands are exponentially distributed,
Xi ∼ Exp(µ), and also cost rates are identical, H = 1.

The heuristic reference dispatching policies are:

1. Random split (RND), which routes customers uniformly at
random to both queues.

2. Join-the-shortest-queue (JSQ), choosing the queue with
the least number of customers. JSQ is optimal with respect
to the sojourn time if the available information is just the
queue length [8]. It is also the individually optimal policy
with the given information (for sojourn time).

3. Least-work-left (LWL) observes the current backlogs and
chooses the queue that minimizes the customer’s waiting
(and sojourn) time. Hence, LWL is the individually opti-
mal policy with respect to the sojourn time.

The above are compared against two new FPI-based policies
that explicitly try to minimize the costs due to being last in line.
For simplicity, the basic policy in both cases is RND.

4. Last-place-aversive (LPA) policy ignores the queue
lengths and routes customers according to (7),

αLPA(z, x) = argmin
i
{a(i)(zi, x)}.

5. Stabilized LPA (sLPA) policy includes also a term for the
sojourn time with a fixed holding cost rate Ht = β,

αsLPA(z, x) = argmin
i

{
a(i)(zi, x) + a(i)

t (ui, x, β)
}
,

where we have chosen to use β = 0.05 (same for all cus-
tomers).

In all cases, possible ties are resolved in favor of the first server.
Figure 4 depicts the simulation results. The left figure shows

the absolute performance in terms of the mean cost per cus-
tomer c̄ (i.e., the mean time being last in line, E[WL]) as a func-
tion of the offered load ρ. The middle figure shows the relative
performance to RND, c̄α/c̄RND. The figure on the right depicts
the mean sojourn time multiplied by (1 − ρ).

First, the mean cost with RND is a straight line in accordance
with Example 1. Similarly, the scaled sojourn time, (1−ρ)E[T ],
is a constant (two M/M/1 queues). The last-in-line performance
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Figure 4: Simulation results with RND, JSQ, LWL and Last-place-aversive FPI policies LPA and sLPA. The left figure shows the absolute performance in terms of
the mean cost per customer, the middle figure depicts the relative performance to RND, and the figure on the right depicts the mean sojourn time. Note that LPA
becomes unstable, unless the sojourn time (or waiting time) is included to the objective (dotted line, corresponding to sLPA).

with JSQ and LWL is clearly better than with RND when the
load is low, but becomes similar under heavy load. In contrast,
LPA yields significantly lower costs than any other policy espe-
cially when the offered load increases. However, as predicted,
it becomes unstable as ρ increases, somewhere about ρ = 0.9 in
this case. The stabilized variant, sLPA, keeps the mean sojourn
time under control while reducing the last-in-line costs at the
same time. The exact behavior can be controlled by adjusting
the weight parameter β.

5. Conclusions

Humans experience waiting in line in bizarre ways. One pe-
culiarity is that we dislike being the last customer in line. In
this paper, we considered the standard M/G/1 queue subject to a
cost structure that models this behavior explicitly. In particular,
we defined that a customer incurs costs until the next customer
joins the queue behind him, or he enters the service. In the gen-
eral case, the cost rate can be customer specific and increase in
time. Thus, even though the queueing discipline is FCFS, the
actual costs a customer incurs depend explicitly on what hap-
pens in the future. In this sense, the system is similar to the
last-come-first-served (LCFS) and processor sharing (PS) sys-
tems, where customers arriving in future affect the sojourn time
of the present customers.

We analyzed the last-in-line queueing models in the MDP
framework and derived exact expressions for the mean costs,
value functions and admission costs. These results were then
applied to develop the last-place-aversive routing (LPA) poli-
cies that aim to minimize the discomfort due to being last in
line in the setting of parallel servers. By means of simulations,
we showed that a central dispatcher can effectively reduce the
discomfort the customers experience due to being the last in
line.
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