
STAR and RATS: Multi-level Dispatching Policies
Esa Hyytiä∗ and Rhonda Righter†

Department of Computer Science∗, University of Iceland
Department of Industrial Engineering and Operations Research†, University of California Berkeley

Abstract—A dispatching system is a parallel server system
where new jobs must be assigned to a server immediately upon
arrival. We consider how to improve dispatching decisions by
combining basic assignment policies that do not require state
information into two levels: the first level dispatcher assigns jobs
to a set of second level dispatchers, each with their own pool
of servers. In each level or stage the decision is made by a
static policy or Round-Robin principle. Such policies are fast
and scale well as only local information is needed. The order
of policies, whether RR should be first or second, gives rise to
two dispatching policy classes, RATS and STAR. We show that
the two-level STAR policy always outperforms RATS, and often
outperforms any single-level policy. Moreover, STAR policies are
robust across a range of parameter values and distributions for
inter-arrival times and job sizes.

I. INTRODUCTION

In today’s Internet, many popular services (e.g. Google,
YouTube, Amazon, Alibaba, Ebay, Netflix) are provided
through a large number of parallel servers as no single server
would be able to respond to all queries. The large number of
servers means that scalability becomes a critical issue when
designing a system.

An elementary model for controlling such parallel server
systems is a dispatching system, where arriving jobs are
routed immediately upon arrival to one of the available servers
(resources) and where the service discipline is first-come-first-
served (FCFS). When the number of servers is large, it is
infeasible to query all servers for each new job to support
the routing decision. Instead, the routing decision must be
made quickly based on local information. This leaves us with
two types of policies: i) static policies that are based on the
information about the job itself (e.g., its size or class), and ii)
Round-robin (RR) policies which use (a small amount of) the
routing history. Among static policies, we consider random
split (RND) and size-interval-task-assignment (SITA). RND
chooses the destination at random, whereas SITA is based on
the information about the job sizes (assumed to be available).
In this paper, we study how RND, SITA or any other static
policy should be combined with RR in a multi-level dispatcher.

Our main contributions are structural results. First, we argue
that STAR (static then RR) is always better than RATS (RR
then static); the static policy should come first. Second, we
argue that among the different combinations of RND, SITA
and RR, the optimal policy is (single-level) SITA or RR
or SITA-RR. We also give numerical examples that support
the theoretical results and provide insight about different
policies. We find that STAR is robust across parameters and
distributions for job sizes and inter-arrival times, and that

STAR’s gain in performance over pure (single-level) policies is
generally comparable to that of dynamic policies over STAR.

A. Related work

Static RND has been a reference policy since the early work
by Buzen and Chen [1]. SITA was first proposed and studied
by Harchol Balter et al. in [2] and [3], and its optimality,
given only jobsize information, was shown by Feng et al. [4].
Recently, Doncel et al. [5] study SITA policies for systems
comprising n parallel SITA dispatchers each with a dedicated
set of K/n servers. This is equivalent to a two-level system,
where RND is followed by SITA.

RR is optimal among policies that do not use state or job
size information [6], [7], [8]. The idea of combining SITA and
RR in a multi-level configuration has been proposed in [9] and
[10], and more recently, in [11]. In [9] and [10], it is shown
how the value function can be determined for such systems,
which, by a policy improvement step, yields efficient dynamic
dispatching policies that often outperform myopic join-the-
shortest-queue (JSQ) and least-work-left (LWL) policies. Re-
cently, Anselmi [11] studies SITA-RR, i.e., a STAR system,
and shows, using Kingman’s upper bound for the mean of the
GI/GI/1 queue [12], that the waiting time goes to zero as the
number of servers goes to infinity. The optimal scaling of the
number of second level RR dispatchers is shown to be sub-
linear for bounded and Pareto jobsize distributions. In contrast,
our results are based on the notion of stochastic ordering, and
they are exact for all system sizes.

II. MODEL AND PRELIMINARIES

Suppose we have a parallel server system with n identical
servers. New jobs are assigned to servers immediately upon
arrival by a job dispatcher, and are served in first-come-
first-served (FCFS) order. Thus the dispatcher is responsible
for ensuring that the available processing capacity is used
efficiently. We assume general i.i.d. inter-arrival times (IATs)
A and job sizes X . We let λ refer to the job arrival rate,
λ = 1/E[A]. The objective is to minimize the mean waiting
time, i.e., the mean number of jobs in the system (cf. Little’s
result), or higher moments.

To this end, we consider how different basic dispatching
policies, generally those that do not depend on the current
state and that balance the loads, can be combined to improve
performance. The results are of structural type, characterizing
which design is better. The absolute performance is demon-
strated in Section IV.

Va
ria

bi
lit

y
in

X

Variability in IATs
Poisson
process

Constant
IAT

RND

SITA

RR
RND

SITA

RR

RR

RR

RND

RND

SITA

SITA

S
ITA

RND

RND

STA

RR

RR

D/D/1

Fig. 1. The qualitative effect of the basic routing decisions on the variabilities
of inter-arrival times and jobsizes.

A. Basic policies

As basic dispatchers, we consider three well-known policies
often abbreviated as RND, SITA, and RR, and additionally,
STA, which refers to an arbitrary static policy.

The STA dispatching policy refers to a generic static
policy, which splits the stream of incoming jobs into n classes
according to some rule that is independent of the state and the
history. Server i is chosen with probability bi and the sizes of
class i jobs have distribution Xi (recall that jobs were i.i.d.).
The load is balanced when the bi E[Xi] are equal. SITA and
RND, described next, are two special cases of STA.

The RND dispatching policy chooses the server uniformly
at random, so Server i is chosen with probability bi = 1/n.
RND is a robust choice as it clearly balances the load among
the servers, and requires no information about job sizes, the
current state, or past decisions.

The SITA dispatching policy splits the range of the jobsize
X into n non-overlapping intervals,

{[ξ0, ξ1), [ξ1, ξ2), . . . , [ξn−1, ξn)},

where ξ0 < . . . < ξn, and routes a job to Server i if it
belongs to the ith interval. Let f(x) denote the pdf of the
jobsize distribution X . A random job is routed to Server i
with probability

bi =

∫ ξi

ξi−1

f(x) dx. (1)

The nominal workload at Server i with SITA is given by

ri =

∫ ξi

ξi−1

x f(x) dx,

and by definition, r1+. . .+rn = E[X] and E[Xi] = ri/bi. We
assume that size-intervals of SITA are chosen so that the load
is balanced. In this case, the size-intervals depend solely on the
job size distribution X , and the ri’s are equal, ri = E[X]/n.

The SITA policy, given known job sizes, requires no infor-
mation about the current state or past decisions. The version
of SITA that chooses the thresholds to minimize the overall
response time is known as SITA-opt, and is optimal among
static policies [4]. The load-balancing version of SITA that
we consider is also known as SITA-e [3].

The RR dispatching policy routes jobs sequentially,
{1, 2, . . . , n, 1, 2, . . .}. Therefore, it has to keep track of where

TABLE I
NOTATION.

A inter-arrival time to system
Di inter-departure time to destination i
Ti inter-arrival time at Server i
X job size (service time)
bi routing probability to destination i with STA
n number of servers
W waiting time

the previous job was sent. The RR policy automatically
balances the load for identical processors.

All three policies are thus highly scalable and easy to
implement. The notation is summarized in Table I.

B. Effect of the basic policy

All policies in STA maintain or promote the Poisson nature
of the arrival process, i.e., if jobs arrive according to a Poisson
process, each outgoing flow is also going to be a Poisson
process. If the arrival process is not yet Poisson, the resulting
output processes will become a bit more Poisson. In this sense,
the Poisson process is the “fixed point” of all (non-trivial1)
static dispatching policies.

In contrast, for RR, the fixed point is the arrival process with
constant IATs: if jobs arrive at constant IATs, each outgoing
flow also exhibits the same characteristic. If the IATs are not
deterministic, the outgoing flows are going to be more regular
(according to the central limit theorem).

The general wisdom is that waiting times for FCFS servers
increase both with highly varying IATs and highly varying
service times. RR addresses the former by regulating the inter-
arrival time distribution, whereas SITA addresses the latter.
In addition, if the inter-arrival times are more variable than
exponential, static policies also regulate inter-arrival times.
When the objective function is something other than waiting
times, e.g., involving job-specific holding costs or deadlines,
it may be worth considering a static policy that takes into
account the particular cost structure.

All these observations are illustrated in Figure 1, where
variability is measured, e.g., by the coefficient of variation.
Note that the point at the bottom left corner corresponds to
the case where both job sizes and inter-arrival times (IATs)
are constant, and with RR no job needs to wait. This point
can be reached in the large system limit when n→∞ [11].

The inter-play between RND and RR has been discussed in
past work. The most studied region is the vertical Poisson
process line. In [3], the authors study highly varying job
sizes and make the observation that the performance of RND
and RR is similar in this case. In Figure 1, their scenario
corresponds to the high values along the Poisson process line.
Along this line, with RND the situation remains the same,
while RR brings the system closer to the y-axis. However, the
high variability in X is undiminished in both cases.

1By non-trivial we mean that the policy actually splits the incoming flow
into several outgoing flows according to some non-zero probabilities bi.

Cloud Operator(s)

server 1

server 2

server 3

server 4
P2

P1

Customer

Fig. 2. Two-party case, where the customer can choose between the Pi.

C. Multi-Level Dispatchers RATS and STAR

In this paper, we study possible ways to combine the
strengths of the aforementioned basic policies, and in partic-
ular, we focus on combining RR with a static policy by using
a multi-level dispatching network as depicted in Figure 2.
For simplicity, we consider homogeneous two-level systems
where the fan-out factor of RR dispatcher(s) is denoted by
nR, the fan-out factor of STA dispatcher(s) is denoted by nS,
and n = nR · nS. (The fan-out factor refers to the number of
destinations available for the given dispatcher.)

Definition 1 (STAR and RATS): The STAR dispatching
policies first split the jobs into nS classes using a static
policy, and then apply Round-Robin within each class to route
jobs among a set of nR class-specific servers. The RATS
dispatching policies proceed in reverse order, i.e., with an RR
dispatcher followed by nR parallel STA dispatchers.

Note that in our terminology, it is always the static policy
that assigns a class for each job. With SITA this is explicit as
class refers to a certain jobsize interval, whereas with RND
the assignment is random by definition.

A multi-level dispatching system can model systems in two
different contexts.

a) Single-Party Scenario: The resulting dispatching rules
can be considered as just a restricted class of dispatching
policies that can be implemented in one dispatching unit. For
example, the dispatching rule of the RATS policy RR-SITA
can be implemented at a single dispatcher as follows:

1) i← (i+ 1) mod nR (RR)
2) j = SITA(x) (SITA)
3) Return i · nS + j

With the STAR policies, the dispatcher needs to keep track of
nS counters, but otherwise the logic is essentially the same.

b) Multi-Party Scenario: The other possibility is that the
dispatch levels belong to separate logical entities. In particular,
this is the case in systems where routing decisions are made
by two different “jurisdiction areas” as illustrated in Figure 2.
A customer can submit jobs to one of two “queues”, P1 or
P2. The service provider will forward jobs immediately to
servers using some internal dispatching rule. We refer to this
case as a Two-Party dispatching system, as each party, the
customer and the service provider (cloud operator), can decide
on job assignment only within their respective areas. Similar
situations arise in the presence of multiple service providers,
and hence the general term, Multi-Party scenarios.

III. ANALYSIS

We start by analysing the two specific systems depicted in
Figure 3. The results are generalized later in Section III-B.

A. Example systems with SITA and RR

Let us consider the two systems depicted in Figure 3, which
combine the static SITA policy and RR to assign jobs to n = 6
identical servers. System 1 does RR first, so it is a RATS policy
while System 2, with RR last, is a STAR policy. The arrival
process is a Poisson process with rate λ, and as before, X
denotes the job size.

In general, the parameters of each RR and SITA dispatcher
chould be set individually according to the pool of jobs they
receive and the dispatcher-specific fan-out factor (the number
of “servers” they see). However, in our example the two
configurations are chosen so that RR has the fan-out factor two
and splits the incoming jobs into two streams by alternating
between two decisions, 0, 1, 0, 1,

Similarly, SITA always splits the jobs into the same nS = 3
classes based on their size. That is, SITA dispatchers in both
systems share the same thresholds ξi. We let Xi, i = 1, . . . , 3
denote the class-specific jobsizes, Xi = (X | X ∈ [ξi−1, ξi)).

With both arrangements of dispatchers, the system decom-
poses into n GI/GI/1 queues, with balanced loads, that can
be analyzed independently. In particular, with both designs in
Figure 3, two of the servers receive jobs of size Xi, i = 1, 2, 3.
Therefore, the only possible difference is in the inter-arrival
time distributions to the corresponding servers.

System 1: RATS (with SITA as the STA policy): In this case,
the inter-departure times from the RR dispatcher to a SITA
dispatcher are Erlang-distributed,

D′ ∼ Erlang(2, λ).

SITA is static, so the IAT at Server i is a random sum,

Ti = D′1 + . . .+D′Ni
,

where Ni ∼ Geo1(bi) and D′j are i.i.d., D′j ∼ D′. Conse-
quently, the mean inter-arrival time at Server i is

E[Ti] = E[Ni] · E[D′] =
2

biλ
.

Similarly, for the second moment we have

E[T 2
i] = E[E[(D′1 + . . .+D′Ni

)2 | Ni]]
= E[Ni V[D′] +N2

i E[D′]2]

= E[Ni] V[D′] + E[N2
i] E[D′]2.

Given E[Ni] = 1/bi and E[N2
i] = (2 − bi)/b2i , and E[D′] =

2/λ and E[D′2] = 6/λ2, we obtain

E[T 2
i] =

8− 2bi
(biλ)2

,

so that

V[Ti] =
4− 2bi
(biλ)2

.

server 1

server 2

server 3

server 4

server 5

server 6

SITA

SITA

RR

λ

System 1: RR-SITA (RATS)

server 1

server 2

server 3

server 4

server 5

server 6RR

RR

RR

SITA

λ

System 2: SITA-RR (STAR)

Fig. 3. Two configurations of multi-level dispatching systems.

In particular, the squared coefficient of variation is

c2v(Ti) =
2− bi

2
, (2)

so that
1

2
< c2v(Ti) < 1, ∀ i. (3)

Note that the inter-arrival time distribution to the system
with the assumed Poisson arrival process is exponential,
A ∼ Exp(λ) so that c2v(A) = 1. The improvement due to
RR is thus visible at each server. Referring to Figure 1, RATS
corresponds to a move from the Poisson line in the downward
left direction.

System 2: STAR (with SITA as the STA policy): In this
system, the level 1 dispatcher is the static SITA, followed
by three RR dispatchers receiving jobs according to Poisson
processes with rates biλ. Consequently, the inter-departure
time from the first level SITA dispatcher is exponentially
distributed with parameter biλ. After the second level RR
dispatchers, the inter-arrival time at type i server is Erlang-
distributed,

T̃i ∼ Erlang(2, biλ).

The mean, obviously, is the same as before,

E[T̃i] =
2

biλ
.

However, the variance is

V[T̃i] =
2

(biλ)2

and thus the coefficient of variation for the IATs turns out to
be a constant,

c2v(T̃i) =
1

2
. (4)

Comparing (3) to (4), we observe that c2v(Di) of the inter-
arrival time for each server in System 2 is smaller than in the
corresponding server in System 1.

B. RATS vs. STAR: general case

Let us next analyze the corresponding RATS and STAR
systems with an arbitrary STA policy and general arrival
process with X denoting the job size distribution and A the
i.i.d. inter-arrival times to the system, λ = 1/E[A]. We also
assume that the all the necessary moments of both A and X
are finite. Suppose System 1 corresponds to an arbitrary RATS
system, and System 2 to the corresponding STAR system. In
both systems, the fan-out factor of RR is nR, whereas the
static policy divides the jobs into nS classes, and there are
n = nS · nR identical FCFS servers.

Reminiscent of the good scalability property these policies
share the following property:

Remark 1: With STA, RR and their multi-level combina-
tions, the inter-arrival times have no impact on the dispatching
decisions; the same assignment pattern is carried out regardless
of the realization of the inter-arrival times. However, the inter-
arrival times obviously affect the resulting waiting times.

Next we note that in both systems, the arriving jobs are dis-
tributed so that nR servers receive class i jobs, i = 1, . . . , nS.
We refer to servers processing class i jobs as type i servers (in
the given system). The question is whether RR or the static
policy should be first. The following lemma is immediate.

Lemma 1: The offered load at each server is balanced both
in System 1 and System 2.

Let us consider the departure processes from (single-level)
STA and RR dispatchers. Let Di denote the inter-departure
time from a dispatcher to destination i, i.e., the time-interval
between two jobs assigned to destination i, where the desti-
nation refers to a server or a next level dispatcher.

Lemma 2: With STA, the job inter-departure time from the
stationary dispatcher to destination i is DSTA = A1+ . . .+AN
where N ∼ Geo1(bi), and where bi is as defined in (1) if the
stationary policy is SITA, and it is 1/nS if it is RND. Hence,

E[DSTA] =
E[A]

bi
,

E[(DSTA)2] =
V[A]

bi
+

2− bi
b2i

E[A]2,

and in particular,

c2v(DSTA) = bi c
2
v(A) + 1− bi. (5)

The proof is straightforward and omitted. Note that (5) implies
that c2v(DSTA) is closer to 1 than c2v(A) for all c2v(A) 6= 1.

Lemma 3: With RR, the inter-departure time from the RR
dispatcher to destination i is DRR = A1 + . . .+AnR so that

E[DRR] = nR · E[A],

E[(DRR)2] = nR ·V[A],

and moreover,

c2v(DRR) =
c2v(A)

nR
. (6)

Also this proof is straightforward and omitted. So with RR,
(6) implies that 0 < c2v(DRR) < c2v(A) for all c2v(A) > 0 (cf.
Figure 1).

Utilizing these two lemmas gives an immediate corollary:
Corollary 1: The mean inter-departure time to destination i

with RATS and STAR are equal,

E[DRATS] = E[DSTAR] =
nR · E[A]

bi
,

whereas the squared coefficient of variations are different,

c2v(DRATS) =
bi · c2v(A)

nR
+ 1− bi, (7)

and

c2v(DSTAR) =
bi · c2v(A) + 1− bi

nR
. (8)

Therefore STAR provides less variable arrival times than
RATS to each Server i.

A recursive design would apply the same dispatcher multi-
ple times. So let us consider a system with a large number of
levels each with the same type of dispatcher, and determine the
fixed point for the variability in the resulting inter-departure
times. For simplicity, we assume RND as the static policy with
the same fixed probability b at every level:

1) With RND, (5) implies that c2v(DRND)→ 1.
2) With RR, (6) implies that c2v(DRR)→ 0.
3) With RATS, (7)

c2v(DRATS)→ (1− b)nR

nR − b
<

nR

nR − 1
.

4) With STAR, (8)

c2v(DSTAR)→ 1− b
nR − b

<
1

nR − 1
.

All these fixed points correspond to vertical lines in Figure 1.
Example 1: Suppose the fan-out ratio of RR is nR = 2 and

A ∼ Exp(λ) so that c2v(A) = 1. Then (7) reduces to (2), and
(8) reduces to (4), as expected.

Let us next consider distributions of the resulting inter-
departure times using the Laplace-Stieltjes transform (LST).

Proposition 1: The LST’s of the inter-departure times with
RR and STA are

DRR(s) = A(s)nR , (9)

DSTA(s) =
bA(s)

1− (1− b)A(s)
, (10)

where A(s) denotes the LST of an inter-arrival time.
Proof: The inter-departure time in both cases is a sum of N
i.i.d. time-intervals Ai, D = A1 + . . .+AN . The LST of D is
GN (A(s)), where A(s) is the LST of A and GN (z) denotes the
generating function of random variable N , GN (z) = E[zN].

With STA, for destination i, N = Ni is geometrically
distributed, N ∼ Geo1(b), where b = bi is the probability
of job being assigned to destination i, and

GN (z) =
bz

1− (1− b)z
.

With RR, N is constant, N = nR, and

GN (z) = znR .

These yield (9) and (10). �
Corollary 2: Using (9) and (10) recursively yields,

DRATS(s) =
bA(s)nR

1− (1− b)A(s)nR
,

DSTAR(s) =

(
bA(s)

1− (1− b)A(s)

)nR

.

Example 2 (Poisson arrival process): With Poisson arrival
process, A(s) = λ/(λ+ s). According to Corollary 2,

DRATS(s) =
bi

(1 + s/λ)nR − (1− bi)
, (11)

DSTAR(s) =

(
λbi

λbi + s

)nR

, (12)

and thus DSTAR ∼ Erlang(nR, biλ).
Example 3 (Constant inter-arrival times): Suppose the inter-

arrival times are constant, A = 1/λ, so that A(s) = e−s/λ. In
this case,

DRATS(s) =
be−snR/λ

1− (1− b)e−snR/λ
,

DSTAR(s) =

(
be−s/λ

1− (1− b)e−s/λ

)nR

.

RATS with A = 1/λ thus reduces to STA with A = nR/λ,
as expected, which means that jobs arrive at Server i with
geometrically distributed fixed time intervals with interval
length of nR/λ.

C. On better design

According to Corollary 1, inter-arrival times are more vari-
able with RATS than with STAR, which suggests that STAR
is a better design. In this section, we give two results that
formally support the claim. To this end, we need to introduce
the following stochastic ordering notions [13].

Definition 2: X is smaller than Y in the increasing convex
sense, denoted by X �icx Y , if E[f(X)] ≤ E[f(Y)] for all

increasing convex functions for which the integrals are defined.
Similarly, X �cx Y if E[f(X)] ≤ E[f(Y)] for all convex
functions.
For example, f(x) = x is increasing and convex, so X �icx Y
implies that E[X] ≤ E[Y]. Similarly, f(x) = x and f(x) =
−x are both convex, so X �cx Y implies E[X] = E[Y]. As
f(x) = x2 is also convex, we have

X �cx Y ⇒ V[X] ≤ V[Y].

Note that ordering in the convex sense is sometimes referred
to as Y being more variable than X . Obviously,

X �cx Y ⇒ X �icx Y.

It turns out that

E[X] = E[Y] and X �icx Y ⇔ X �cx Y.

For more details, we refer to [13] and [14].
One particularly useful ordering result for GI/GI/1 queues

is the following [15]:
Proposition 2 (Stoyan and Stoyan (1969)): Consider two

GI/GI/1 queues with respective inter-arrival distributions T1
and T2, and service time distributions X1 and X2. If T1 �icx
T2 and X1 �icx X2, then W1 �icx W2.

Corollary 3: Consider two GI/GI/1 queues with identical
service time distribution, X1 ∼ X2, but different inter-arrival
time distributions, T1 and T2. If the inter-arrival times vary less
in System 1 than in Server 2 in the convex sense, T1 �cx T2,
then E[(W1)j] ≤ E[(W2)j] for all j.

The next proposition is our main result:
Proposition 3: The inter-departure times are less variable in

the convex sense for STAR systems than for RATS systems,
DSTAR(i) �cx DRATS(i), for all destinations i.
Proof: Let A be a random inter-arrival time for an arbitrary
renewal process and N ∼ Geo1(bi). Let Aj ∼ Aij ∼ A i.i.d.
and Ni ∼ N i.i.d, and let N̂ =

∑nR
l=1Ni. Then,

DRR =

nR∑
i=1

Ai, and DSTA =

N∑
i=1

Ai.

For RATS,

DRATS =

N∑
j=1

(
nR∑
l=1

Ajl

)
=

nR∑
l=1

 N∑
j=1

Ajl

 =

nRN∑
j=1

Aj .

For STAR,

DSTAR =

nR∑
l=1

 Nl∑
j=1

Ajl

 =

N̂∑
j=1

Aj .

From Theorem 3.A.13 of [13], DSTAR �cx DRATS as long as
nR N �cx

∑nR
l=1Ni. Note that this is equivalent to N̄ :=∑nR

l=1Nl/nR �cx N , i.e., the sample mean of i.i.d. random
variables is smaller (less variable) in the convex order sense
than an individual random variable. (See, e.g., [13, Example
3.A.29]). �

We have the following corollary because all our random
variables are non-negative.

Corollary 4: STAR is better than RATS in the sense that

E[(WSTAR)j] ≤ E[(WRATS)j], for j = 1, 2,

In the numerical examples of Section IV, we will see that
often E[WSTAR] < E[WRATS] by a significant margin.

The STAR systems are superior to RATS also in one other
respect. Namely, the second level server pools do not have to
be of equal size (capacity) as any STA policy can always be
modified to balance the load (cf. RND).

Proposition 4: STAR policies can balance the load for any
number of servers. With RATS the load can be balanced only
when the fan-out factor nR of the first level RR dispatcher
divides n, nR | n.

The key observation is that the first level dispatcher must
be able to balance the load appropriately as the second level
dispatchers cannot shift the load to other dispatchers. An
inability to balance the load means that the system is less
likely to be stable.

Corollary 5: The stability region with STAR, STA and RR
is at least as large as with RATS.

Note that balancing the load among heterogeneous servers
complicates the situation even more, and it is easy to show that
only STAR and STA can balance the load for every system.

D. Two-level dispatching with RND

Let us next consider two-level systems where RR or SITA
is replaced with RND.

a) RND and SITA: If RR is replaced by RND, the two
systems both reduce to an ordinary SITA system with three
servers. Let us refer to this equivalent system as System B.
The inter-arrival times are exponential with c2v(Ti) = 1. The
size-intervals are the same as before, and we can conclude that
the performances with RND-SITA and SITA-RND systems are
worse than with the corresponding RATS and STAR systems.
More specifically,

E[WSTAR] ≤ E[WRATS] ≤ E[WB] ≤ E[WRND],

because the basic SITA is better than RND [16], and RR is
better than RND [6], [7], [8].

b) RND and RR: Replacing SITA with RND gives us the
RATS policy RR-RND and the STAR policy RND-RR. From
Corollary 4,

E[WRND-RR] ≤ E[WRR-RND].

E. Summary of Theoretical Results

The full matrix illustrating the structural results for different
designs is depicted in Figure 4. Note that the policies on the
diagonal reduce to the single-dispatcher systems with RND,
SITA and RR. One of the three shaded policies is optimal
depending on the distributions of the inter-arrival times and
job sizes. The conjecture that RR-SITA is better than RR-RND
is supported in the Appendix using Kingman’s approximation
(and hence the dashed line) [17]. Other relations are either
well-known or follow from our results.

Level 1

L
ev

el
2

RND

RND

SITA

SITA

RR

RR

Fig. 4. Comparison of different designs (when nR | n). An arrow A → B
means B is at least as good as A for all parameters).

For example, when IAT is constant, it is constant also after
RR (recall Figure 1), yielding the D/G/1 queue. When X is
constant, SITA reduces to RND, and pure RR is better than
SITA or SITA-RR. This is also the case if both IATs and job
sizes are constant. In this specific case, RR is the optimal
policy, whereas STA, STAR and RATS are suboptimal. In
the numerical examples, we see examples where SITA-RR is
better than SITA and RR.

Our results also have implications for the two-party scenario
presented earlier in Section II-C, and illustrated in Figure 2.

In particular, and in contrast to RATS, with STAR the
roles given to each level of dispatchers match their positions
surprisingly well. The first level dispatcher is responsible for
assigning each job to a class (e.g., the size-interval of SITA),
and indeed, usually the customer is better positioned to do
that because she, if anyone, should know about her jobs.
The service provider will have much less information about
submitted jobs (apart from contracts and possible machine
learning approaches), which matches well with its role given
by STAR, i.e., regulating the inter-arrival times with RR.
That is, in the STAR design both the first and second level
dispatchers can focus on what they naturally do best!

IV. NUMERICAL EXAMPLES

We have shown that a STAR design is superior to the
corresponding RATS design, and for both designs SITA is
better than RND for the stationary routing level. From now
on, because SITA dominates RND in both cases, when we
refer to STAR and RATS, we will assume the stationary policy
is SITA. Next we resort to simulation experiments in order to
see how STAR, RATS, SITA and RND perform in comparison
to other dispatching policies, including the dynamic JSQ and
LWL policies (JSQ chooses the queue with the least number
of jobs, whereas LWL chooses the queue with the least work
left).

A. Poisson arrival process

Figure 5 depicts the simulation results with 4 and 8 servers
and Poisson arrival process for the four job size distributions
given in Table II, where c2v(X) denotes the squared coefficient

TABLE II
SIMULATION PARAMETERS IN THE FIRST EXPERIMENT.

X0 ∼ Constant(1) E[X0] = 1 c2v(X0) = 0

X1 ∼ U(0, 2) E[X1] = 1 c2v(X1) = 1/3

X2 ∼ Exp(1) E[X2] = 1 c2v(X2) = 1

X3 ∼ Weibull E[X3] = 1 c2v(X3) = 2

TABLE III
SIMULATION PARAMETERS IN THE SECOND EXPERIMENT.

A0 ∼ Constant(1/λ): E[A0] = 1/λ c2v(A0) = 0

A1 ∼ U(0, 2/λ): E[A1] = 1/λ c2v(A1) = 1/3

A2 ∼ Exp(λ): E[A2] = 1/λ c2v(A2) = 1

A3 ∼ Weibull: E[A3] = 1/λ c2v(A3) = 2

of variation, c2v(X) = V[X]/E[X]2. With RATS and STAR,
we have fixed nS = 2 so that SITA splits the jobs into two
classes, and RR splits the incoming flow into nR = 2, 4 sub-
flows (nR | n in each case).

First, the constant jobsize is a special case where SITA
reduces to RND, and LWL reduces to RR. Consequently, the
elementary RR is even better than the dynamic JSQ policy
in this case. Otherwise, we observe that each policy benefits
from the larger system (cf. multiplexing gain); larger n results
in lower mean waiting time with the same load.

Second, all policies except RR appear to be relatively
insensitive to small changes in the job size variance. In
particular, the performance of SITA and RATS is similar across
the different number of servers n and job-size distributions X .
Similarly, the performance of JSQ is always close to that of
LWL, and STAR is somewhere between the two groups. In
contrast, RR yields a (relatively) short mean waiting time with
uniformly distributed job sizes, but the performance quickly
deteriorates when the variance in the job sizes increases.

Third, we see that pure RR works well whenever the
offered load is (very) low. However, its performance relative
to other policies tends to deteriorate as ρ → 1 when V[X]
is sufficiently high, and eventually the static SITA is better.
That is, the sum of cv’s is not sufficient to determine relative
performance – ρ matters too. This highlights the fact that the
performance order between RR, SITA and STAR depends on
the system parameters – we only know that STAR is always
better than RATS (Proposion 3).

B. Uniform and Weibull Inter-Arrival Times

Let us next consider non-exponentially distributed inter-
arrival times given in Table III. The corresponding simulation
results are depicted in Figure 6. With A0 and A1, the mean
waiting time with each policy is smaller than with Poisson
arrivals, as expected. Otherwise, there are no surprises; STAR
is the best policy not utilizing the state information from
the servers. With the Weibull-distributed A2, the inter-arrival
times vary more than the job sizes, and the performance of
RR improves relative to other policies. RR is also better than
STAR when the load is low.

X ∼ Constant(1) X ∼ U(0, 2) X ∼ Exp(1) X ∼Weibull
n

=
4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

RND &
 S

IT
A RATS

STAR

JSQ

RR & LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N
D

SITA

RATS

STAR

RR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

R
R SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

R
R

R
A
TS

SITA

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

n
=

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

RND &
 S

IT
A

RATS

STAR

JSQ

RR & LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N
D

SITA

RATS

STAR

RR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR

SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

R
R

SIT
A

RATS
STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

Fig. 5. Simulation results with 4 and 8 servers and Poisson arrivals.

A ∼ Constant(1/λ) A ∼ U(0, 2/λ) A ∼ Exp(λ) A ∼Weibull

n
=

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR

SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR

SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

R
R SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

SIT
A

R
R

R
A
TS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

n
=

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR
SITA
RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR

SITA
RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

RR

SITA

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

R
N

D

SIT
A

R
R

RATS

STAR

JSQ

LWL

(1
-ρ

)
E

[
W

]

Offered load ρ

Fig. 6. Simulation results with different inter-arrival time distributions when X ∼ Exp(1).

V. CONCLUSIONS

A layered approach for job dispatching has been studied also
in the context of tackling the scalability problem with dynamic
policies such as JSQ and LWL. Namely, power-of-d policies,
where d defines the number of randomly chosen servers
considered per routing decision, scale well in the number of
servers. For example, the power-of-two with JSQ first chooses
two random servers, and then applies JSQ between them. Thus,
two queries instead of n are needed per job. Such policies have
been shown to work very well with small d [18], [19], [20].

In closely related work, Down and Wu [21] consider a
system operating under the SRPT (shortest remaining pro-
cessing time first) service discipline, and in which there are a
finite number of job sizes, each with its own RR dispatcher.
The RR dispatchers are used to spread jobs of all sizes to
each server to maximize the benefits from the optimal SRPT

scheduling (in contrast to what SITA aims to achieve for FCFS
scheduling). In some sense, in our setting with continuous
job size distributions, this corresponds to SITA-RR. This
highlights the fact that the dispatching policy should take into
account the scheduling discipline at each server.

Our main contributions are structural results. In particular,
we argued that in a multi-level dispatching systems, the static
rule should be applied before RR, i.e., that STAR is better than
RATS. STAR is also straightforward to adapt for any number
of servers, whereas with RATS the fan-out factor of the initial
RR must be a factor of n. Moreover, STAR is the natural
operation model for real systems with two or more parties.

In the numerical experiments, we observed that the differ-
ence in absolute performance can be significant. The STAR
policy with SITA has consistently good performance in every
scenario while also being highly scalable. Pure RR may be

better if the load is light or the variance in the job sizes
is small. Numerical experiments also highlight the fact that
RR is important when most of the variability is in the IAT’s,
whereas SITA is most beneficial when job-size variability is
high. Because of its good performance for a wide range of
job size distributions and inter-arrival time distributions, STAR
is the most robust of the three nondynamic policies. In our
scenarios STAR’s relative gain in performance over RR or
SITA is comparable to the relative gain of a dynamic policy
relative to STAR.

REFERENCES

[1] J. P. Buzen and P. P. Chen, “Optimal load balancing in memory
hierarchies,” in Proceedings of the 6th IFIP Congress, Stockholm,
Sweden, Aug. 1974, pp. 271–275.

[2] M. E. Crovella, M. Harchol-Balter, and C. D. Murta, “Task assignment
in a distributed system: Improving performance by unbalancing load,”
in Proceedings of SIGMETRICS ’98, Madison, Wisconsin, USA, Jun.
1998, pp. 268–269.

[3] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On choosing a task
assignment policy for a distributed server system,” Journal of Parallel
and Distributed Computing, vol. 59, pp. 204–228, 1999.

[4] H. Feng, V. Misra, and D. Rubenstein, “Optimal state-free, size-aware
dispatching for heterogeneous M/G/-type systems,” Performance Eval-
uation, vol. 62, no. 1-4, pp. 475–492, 2005.

[5] J. Doncel, S. Aalto, and U. Ayesta, “Performance degradation in parallel-
server systems,” IEEE/ACM Transactions on Networking, vol. 27, no. 02,
pp. 875–888, Mar. 2019.

[6] A. Ephremides, P. Varaiya, and J. Walrand, “A simple dynamic routing
problem,” IEEE Transactions on Automatic Control, vol. 25, no. 4, pp.
690–693, Aug. 1980.

[7] Z. Liu and D. Towsley, “Optimality of the round-robin routing policy,”
Journal of Applied Probability, vol. 31, no. 2, pp. 466–475, Jun. 1994.

[8] Z. Liu and R. Righter, “Optimal load balancing on distributed homoge-
neous unreliable processors,” Operations Research, vol. 46, no. 4, pp.
563–573, 1998.

[9] E. Hyytiä and S. Aalto, “Round-robin routing policy: Value functions
and mean performance with job- and server-specific costs,” in 7th
International Conference on Performance Evaluation Methodologies and
Tools (ValueTools), Torino, Italy, Dec. 2013.

[10] ——, “On round-robin routing policy with FCFS and LCFS scheduling,”
Performance Evaluation, vol. 97, pp. 83–103, Mar. 2016.

[11] J. Anselmi, “Combining size-based load balancing with round-robin for
scalable low latency,” IEEE Transactions on Parallel and Distributed
Systems, 2020, online.

[12] J. F. C. Kingman, “Some inequalities for the queue GI/G/1,” Biometrika,
vol. 49, no. 3-4, pp. 315–324, 1962.

[13] M. Shaked and G. Shanthikumar, Stochastic Orders. Springer, 2007.
[14] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,

2007.
[15] H. Stoyan and D. Stoyan, “Monotonieeigenschaften der kunden-

wartezeiten im modell GI/G/1,” Zeitschrift Angewandte Mathematik,
vol. 49, pp. 729–734, 1969.

[16] E. Hyytiä and R. Righter, “Performance degradation in parallel-server
systems with shared resources,” in 13th EAI International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS
’20), Tsukuba, Japan, May 2020.

[17] J. F. C. Kingman, “The single server queue in heavy traffic,” Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 57,
no. 4, p. 902–904, 1961.

[18] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, pp. 1094–1104,
Oct. 2001.

[19] O. Akgun, R. Righter, and R. Wolff, “The power of partial power of
two choices,” in ACM SIGMETRICS, San Jose, California, USA, Jun.
2011.

[20] F. M. G. Arpan Mukhopadhyay, Ravi R. Mazumdar, “The power of
randomized routing in heterogeneous loss systems,” in 27th International
Teletraffic Congress (ITC’27), Ghent, Belgium, Sep. 2015.

[21] D. Down and R. Wu, “Multi-layered round robin routing for parallel
servers,” Queueing Systems, vol. 53, no. 4, pp. 177–188, 2006.

APPENDIX

A. RR-RND vs. RR-SITA

This question is difficult to answer exactly as there is no
closed-form expression for the mean waiting time for the
GI/GI/1 queue. However, we can show that the estimate for
E[W] according to Kingman’s approximation [17],

E[W] ≈ ρ

2(1− ρ)
· (c2v(T) + c2v(X)) · E[X]. (13)

decreases if SITA is used instead of RND:
Lemma 4: SITA yields a lower mean waiting time than RND

according to Kingman’s approximation with i.i.d. inter-arrival
times A and i.i.d. job sizes X .
Proof: The mean waiting time with RND according to (13) is

E[W RND] ≈ Cρ
[

1

n
c2v(A) + 1− 1

n
+ c2v(X)

]
E[X],

where we have utilized (5) with bi = 1/n, and Cρ = ρ/(2(1−
ρ)). For SITA, we similarly have

E[W SITA] ≈ Cρ
n∑
i=1

bi
[
bi c

2
v(A) + 1− bi + c2v(Xi)

]
E[Xi].

With the load-balancing SITA, bi E[Xi] = E[X]/n, and hence

E[W SITA] ≈ Cρ
E[X]

n

n∑
i=1

[
bi c

2
v(A) + 1− bi + c2v(Xi)

]
= Cρ

[
1

n
c2v(A) + 1− 1

n
+

1

n

n∑
i=1

c2v(Xi)

]
E[X].

Consequently, SITA is better than RND according to King-
man’s approximation if

1

n

n∑
i=1

c2v(Xi) < c2v(X).

Equivalently, we need to show that

1

n

n∑
i=1

E[X2
i]

E[Xi]2
<

E[X2]

E[X]2
,

which reduces to

n

n∑
i=1

bisi < E[X2],

where si =
∫ ξi
ξi−1

x2 f(x) dx. As E[X2] = s1 + . . . sn, the
mean waiting time with SITA is smaller than with RND if∑

i

sibi <
∑
i

1

n
si,

which has been shown to hold for the load balancing SITA in
[16, Proposition 3.6]. �

As SITA is better than RND with any inter-arrival distribu-
tion, it is also the case between RR-SITA and RR-RND.

