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Abstract—We consider the M/G/1 queue where job sizes
become known upon arrival subject to a general cost structure.
More specifically, we are interested in determining the optimal
admission policy to the (size-aware) system with multiple job-
classes each having its own admission and rejection costs. The
cost for admitting a job is a class-specific function of the waiting
time. As a special case, we consider a deadline cost structure
where admitting a job that will be late has a smaller cost than
rejecting it. We analyse the system within the framework of
Markov decision processes, and derive expressions that enable
us to determine the size-aware value function, and the optimal
class-specific admission control, as well as the resulting mean
cost. The availability of the value function allows one to develop
efficient dispatching policies for a system with heterogeneous
parallel servers.

I. INTRODUCTION

Admission and dispatching control are critical issues in
large cloud computing systems, and the control is complicated
by the fact that jobs are heterogeneous in their sizes and
costs, and servers are heterogeneous in their processing speeds.
Admission control is especially important when some jobs
are time-critical, so it may be less costly to reject a job that
will not be completed by a fixed deadline, for example, than
to accept it. We first study the admission control problem
for heterogeneous jobs arriving to a single server, and then
discuss how the resulting value functions can be used to
develop efficient dispatching policies for routing admitted jobs
to heterogeneous servers.

In this paper, we consider two cost structures. The first
cost structure is a direct generalization of the deadline cost
structure assumed in our previous work [1], where a job that
has to wait longer than a given threshold τ incurs a fixed cost.
A job can also be rejected upon arrival with the same fixed
cost. Consequently, any reasonable admission control policy
rejects unconditionally all jobs that would be late. The re-
maining question is to determine which jobs should be rejected
proactively. In this paper, we generalize the cost structure by
assuming that rejected jobs incur a cost that is larger than
the cost for starting late. In this case, it may be beneficial to
admit some jobs even if the maximum tolerated waiting time
is exceeded. The second cost structure is even more general,
with arbitrary class-specific admission and rejection costs. For
each class, the cost of accepted jobs is defined by an arbitrary
function of the waiting time. Rejected jobs incur a class-
specific rejection cost. The system is illustrated in Figure 1.
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Fig. 1. The size-aware M/G/1 queue subject to class-specific admission and
rejection costs. Admission decision depends on job’s class j and the current
backlog u in the server.

We analyze these M/G/1 queues with admission control in
the framework of Markov decision processes (MDPs), and
determine the corresponding (size-aware) value functions. In
particular, we show how the value function can be computed
for a given admission control policy. In fact, it turns out that
we can also determine the optimal admission control policy at
the same time. The only unknown parameter, the mean cost
rate with the optimal (or given) policy, must be determined
iteratively.

The multi-class model with arbitrary class-specific admis-
sion and rejection costs is very general with wide application.
For example, it allows us to analyze scenarios where real-time
communication and bulk file transfers share the same link, or
equivalently, when real-time and background computations are
carried out in the same system. Similarly, the admission or
rejection cost can be defined to depend on the size of the job.

These days, parallel server systems are ubiguitous as every
popular service in the Internet relies on a huge number of
parallel servers. A dispatching model enables performance
analysis and optimization of such systems. The availability
of the value functions allows us to develop efficient state- and
cost-aware dispatching policies for parallel server systems by
using the policy improvement step of the Markov decision
processes (MDPs).

The rest of the paper is organized as follows. We start by
generalizing the deadline-specific cost structure in Section II.
In Section III, we consider arbitrary class-specific costs and
show how the optimal admission policy and the corresponding
value function can be determined for the generalized model
without much additional complexity. In Section IV we provide
a numerical example, in Section V explain how our results
can be applied in the context of parallel server systems, and
Section VI concludes the paper.
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Fig. 2. Deadline cost structure with an option to reject.

II. DEADLINE COSTS

Let us consider the M/G/1 queue with arrival rate λ and
general i.i.d. service times (job sizes) denoted by X . For now,
as in [1], we assume that jobs have a deadline for waiting
time before service: if waiting time exceeds time τ , a unit
cost is incurred for all admitted jobs. We will later extend the
analysis to general cost functions for admitted jobs. In [1] we
also assumed a unit cost is incurred for each rejected job, but
now we assume an additional cost for rejection. (Deadlines
have been considered also in many other contexts, see, e.g.,
[2], [3], [4], [5], [6]).

We assume service is FCFS (first-come first-served), so a
job’s waiting time will equal the backlog, u, observed upon
arrival. Formally, our cost structure is as follows (cf. Figure 2):

1) If the job is admitted, it incurs a deadline cost 1 only
if its waiting time u exceeds the set threshold τ , i.e., if
u > τ .

2) If the job is rejected, it incurs a blocking cost of b,
where b > 1.

We let ξ(u) denote the maximum size of a job that will
be accepted in backlog state u. The function ξ(u) defines our
admission policy.

Note that if b ≤ 1, admission control becomes trivial when
u > τ as it is always beneficial to reject jobs in those states.
We also note that the cost structure assumed in [7] corresponds
to the case b→∞, and the cost structure of [1] to b = 1.

A. Value Function and Optimal Admission Control

For simplicity, we assume that service time X has a
continuous support, (0,∞). Let F (x) denote the cdf of X ,
and F̄ (x) = 1− F (x).

The central notion of MDPs is the value function, which, for
a given policy, characterizes the expected long-run difference
in the costs between a system that starts from the given state,
and a system in equilibrium,

v(u) := lim
t→∞

E[V (u, t)− rt], (1)

where the random variable V (u, t) denotes the total costs
incurred in time (0, t) when the system is initially in state u,
and r is the long-run mean cost rate (with the given policy),

r := λE[C],

and where C denotes the cost incurred for a given policy by
a random job in steady state. The value function then enables

policy improvement. It can be also used to show that the
current policy is optimal. For more details, see, e.g., [8], [9].

The value function for the optimal admission policy ξ(u)
satisfies

v(u+ ξ(u)) + 1(u > τ) = v(u) + b, (2)

where 1(·) is the indicator function. For a given state of the
system, u, Eq. (2) defines the critical size ξ(u): smaller jobs
are accepted, whereas larger jobs are rejected. Exactly at this
point the expected costs of the two possible actions are equal.

In our model, with 1 < b < ∞, so the maximal cost of
admission is less than the cost of rejection, it is easy to show
that a policy with ξ(u) = 0 for some u ≥ m with arbitrary
m ≥ τ cannot be optimal because a policy iteration step yields
a better policy for those states given sufficiently small jobs
exist.

Proposition 1: The optimal admission control for states u >
τ , where the deadline will be violated, is a constant threshold,
ξ(u) = h∗, where h∗ is the solution to

h∗

1− ρ∗
(λ+ λ(b− 1) P{X > h∗} − r) = b− 1, (3)

where
ρ∗ = λP{X ≤ h∗}E[X |X ≤ h∗],

and r is the long-run cost rate. Moreover, the corresponding
value function for the tail u > τ is,

v(u)− v(τ) =
u− τ
1− ρ∗

(λ+ λ(b− 1) P{X > h∗} − r). (4)

Proof: Suppose first, for a given h, that ξ(u) = h for
u > τ , and let ρ∗ denote the admitted load, ρ∗ = λP{X <
h}E[X |X < h]. With the constant control while u > τ , we
can utilize the results for the (remaining partial) busy period
in the M/G/1 queue to get the value function using threshold
h, which is the same as (4) with the arbitrary h replacing h∗.
In particular, the first factor corresponds to the mean time for
the system to move from state u to state τ . Then λP{X <
h} + λP{X > h} · b is the cost rate (while u > τ ), and
r is the long-run cost rate, by definition. From PASTA, we
immediately obtain (4) for our arbitrary h. Because (4) is a
strictly increasing linear function of u, according to a policy
iteration step, we will accept a job of size x if v(u + x) −
v(u) + 1 < b. That is, we have that ξ(u) is some constant for
u > τ . In order for ξ(u) = h∗ to be the optimal admission
control, we must have

v(u+ h∗)− v(u) = b− 1, ∀ u > τ, (5)

so that a policy iteration step gives the same policy: no job
larger than h should be admitted when u > τ , and conversely,
it is less expensive to admit jobs shorter than h than to reject
them. That is, ξ(u) = h∗, for h∗ satisfying (5), is the optimal
policy when u > τ .

Substitution of the value function (4) into (5) gives (3),
which defines h∗ as a function of the mean cost rate r.

Consequently, we can determine both the optimal admission
policy, as well as the corresponding value function, for all



ξ∗(u)

backlog uτ

de
ad

lin
e

h∗

Fig. 3. Optimal admission control to M/G/1 queue.

states u ≥ τ (given we know r). Consider next states where
u < τ .

Proposition 2: For state u < τ , the value function v(u)
satisfies

v′(u) = λ

[
F̄ (ξ(u))b− c̄

+F (ξ(u))

(
E[v(u+X)− v(u) |X < ξ(u)]

)]
,

(6)

with the boundary condition v′(0) = 0.
Proposition 2 is a special case of Proposition 4 below, so its
proof is omitted.

The key observation is that given the value function v(u)
for u > τ , (4), the differential equation (6) can be solved
backwards from u = τ to u = 0 for any given value of
r. This leads to some value of the derivative at the origin
v′(0) which depends on the chosen value of r, call it T (r) =
v′(0). The unknown mean cost rate r can then be determined
from the condition T (r) = 0. The numerical solution leads
to a similar iterative procedure as in [1]. Usually only a few
iteration steps (in each of which (6) is integrated backwards)
are needed since, as demonstrated in [1] by an example, T (r)
is a smooth, almost linear function of r.

More specifically, we have the same two options as in [1]:

1) We can determine v(u) and r for any given ξ(u).
2) We can determine the optimal admission policy ξ∗(u),

together with the corresponding value function v(u) and
mean cost rate r, at the same time.

The latter follows from the observation that at every step, for
given u, when v(t) is known for t ≥ u, we can first determine
the optimal ξ(u) from (2) and then the corresponding v′(u).
Both ξ(u) and v(u) can be solved backwards from u = τ to
u = 0.

The optimal admission control is illustrated in Figure 3.
Example 1: Consider an M/M/1 queue with λ = µ = 1,

τ = 2 and b = 2. Then the optimal admission policy has h =
0.715 and r = 0.316. For comparison, the optimal admission
policy with h = 0 (admitting jobs only when u ≤ τ ) gives
r = 0.336. Hence, in this case, serving short jobs, x < 0.715,
even if they will be late decreases costs by about 6%. The
benefit of serving late jobs will be even higher with higher
rejection costs.

B. Steady-state distribution

In [1], it was shown that the steady-state distribution of
backlog, U , g(u) satisfies a Volterra integral equation of the
second kind,

g(u) = λ

(
π0Q(0, u) +

∫ u

0

g(v)Q(v, u) dv

)
, (7)

where Q(v, u) is the probability that a job arriving in state
v < u is admitted causing the backlog to increase beyond u,

Q(v, u) = (F (ξ(v))− F (u− v))
+
,

and where (x)+ = max{x, 0}. In [1] ξ(u) = 0 for u > τ , so
Q(v, u) = 0 for v > τ , and the Volterra equation (7) reduced
to

g(u) = λ

(
π0Q(0, u) +

∫ τ

0

g(v)Q(v, u) dv

)
, u > τ.

In our case, where jobs of size at most h are admitted in any
state u > τ , we need to determine the tail behavior of g(u)
for u > τ . It is easy to see that, for states u � τ where
Q(0, u) ≈ 0, we have

g(u) = λ

∫ u

u−h
g(v) P{X > u− v} dv.

1) Numerical solution: Numerically, we can proceed as
follows. Let n ≥ 3 be some odd number of endpoints of
sub-intervals of (u − h, u) and let ∆ = h/(n − 1) denote
the length of each sub-interval. Then let (g1, . . . , gn) denote
the values of g(u) at points (u − h, u − h + ∆, . . . , u).
Suppose we have some numerical values for (g1, . . . , gn−1).
With numerical integration, the integral on the right-hand side
becomes a weighted sum of the gi, and we obtain, using
Simpon’s composite formula,

gn =
∆

3

n∑
i=1

aigiPi,

where the ai are the coefficient of the Simpon’s integration rule
(1, 4, 2, 4, . . . , 1) and the Pi correspond to the CCDF of the
service time distribution at points (h, h −∆, . . . , 0). Solving
for gn then gives1

gn =
∆

3− λ∆

n−1∑
i=1

aigiPi. (8)

In the next step, we first drop g1 and get (g′1, g
′
2, . . . , g

′
n),

where the last g′n, corresponding to u+∆, is now the unknown.
Then we can normalize the g′i so that, e.g., g′1 = 1, and
utilize (8) again to find out g′n. This iteration tends to converge
quickly, and the ratio g1/gn gives the rate at which the tail
decays (with the number of sub-intervals of h).

In summary, by choosing the intervals appropriately, it is
possible to numerically compute the steady-state distribution
g(u) for a given ξ(u), including the tail.
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Fig. 4. An example admission and rejection cost for class j.

TABLE I
NOTATION.

j job class, j ∈ {1, . . . , nc}
λj arrival rate of class j, and Λ = λ1 + . . .+ λnc

Xj job size of class j, with CDF Fj(x) and CCDF F̄j(x)
cj(u) admission cost of class j job with backlog u (waiting time)
bj rejection cost of class j jobs, bj ≥ cj(u)
r the long-run cost rate
c̄ the overall long-run mean cost per job, c̄ = r/Λ
ξj(u) admission policy of class j (the largest job size admitted)
r the long-run cost rate under a given admission policy

III. GENERAL COSTS WITH MULTIPLE JOB CLASSES

Let us next consider the general case with nc job classes
and general admission costs. More specifically, let λj and
Xj denote the arrival rate and job size of class j jobs,
j = 1, . . . , nc, with cdf’s Fj(x) and F̄j(x) = 1 − Fj(x),
and Λ = λ1 + . . . + λnc Let cj(u) and bj be the admission
and rejection costs of class j jobs, where bj ≥ cj(u), let r be
the long-run cost rate, and let c̄ = r/Λ be the overall long-run
mean cost per job. For simplicity, we assume a constant tail
behavior for admission costs in the sense that, for all j,

cj(u) = γj for u ≥ τ ,

where τ is some (possibly large) value. Examples of possible
admission and rejection costs are illustrated in Figure 4 (cf.
the deadline cost structure illustrated in Figure 2). Finally, we
let the ξj(u) denote the class-specific admission control. The
notation is summarized in Table I.

A. Characterizing the Value Function

It turns out that the solution for the value function has the
same structure as for the single-class case. Consider first the
tail when u ≥ τ .

Proposition 3: The optimal class-specific admission policies
are constant for the tail, ξj(u) = h∗j for u ≥ τ . Then the value
function for the tail is a linear function of u satisfying

v(u)− v(τ) =
u− τ
1− ρ∗

∑
j

λj(Fjγj + F̄jbj)− r

 , (9)

where Fj = Fj(h
∗
j ) and F̄j = F̄j(h

∗
j ), and

ρ∗ =
∑
j

λjFjE[Xj |Xj < h∗j ].

1Given n is sufficiently large, λ∆ < 3.

Proof: The argument is similar to the proof of Proposition 1,
and the summation corresponds to additional costs due to
arrivals, which are γj or bj for each arrival in states u ≥ τ .

Note that in (9), we assumed that r is known. Let us
consider next the whole interval with some fixed admission
policies ξj(u).

Proposition 4: The value function v(u) satisfies the differ-
ential equation

v′(u) = −r +
∑

j λj

[
F̄j(ξj(u)) bj

+Fj(ξj(u))

(
cj(u) + E[v(u+Xj)− v(u) |Xj<ξj(u)]

)]
,

(10)
with boundary condition v′(0) = 0.

Proof: Let δ denote a small time-interval. Then for δ <
u < τ , dynamic programming gives

v(u) =
∑
j

λjδF̄j · (bj + v(u− δ))

+
∑
j

λjδFj · (cj(u) + E[v(u+Xj) |Xj < ξj(u)])

+ (1− Λδ)v(u− δ)− Λc̄.

where Fj = Fj(ξj(u)) and F̄j = F̄j(ξj(u)). Note that r = Λc̄.
In the limit δ → 0, the above equation yields (10).

Consider then the empty system in state u = 0.

v(0) =
1∑

j λjFj
·
(∑

j

λjF̄jbj − r

+
∑

λjFj · (cj(0) + E[v(Xj) |Xj < ξj(0)])

)
.

Thus,∑
j

λj(c̄− F̄jbj) =∑
λjFj · (cj(0) + E[v(Xj)− v(0) |Xj < ξj(0)]) ,

which upon substitution into (10) yields v′(0) = 0.
Note that (10) holds also for the tail when u ≥ τ . It follows

that the mean long-run cost rate r is also determined when
we find a solution to the differential equation (10) that also
satisfies the boundary condition. Conversely, r can be seen
as a free curve parameter for (10), and we are interested in
determining one specific solution.

B. Computing the Value Function and Optimal Control

Finding the correct mean cost rate r and the corresponding
value function is a relatively straightforward task also in this
case. In fact, as before, we have two options: we can determine
i) the value function for a given policy ξj(u) or ii) the optimal
admission policy ξ∗j (u) and the corresponding value function
v(u).

For a fixed admission policy, the procedure is as follows:
1) Pick r such that 0 < r <

∑
j λjbj .

2) Solve the v(u) using (9) and (10).
3) If |v′(0)| < ε, accept the numerical solution.



4) If v′(0) < 0, the correct mean cost rate is larger, and
vice versa. Adjust r accordingly and go to Step 2.

By iteration, we eventually find the correct r and the corre-
sponding value function v(u).

When we are interested in determining (also) the optimal
admission control policy, ξj(u), we proceed similarly:

1) Choose a candidate for r.
2) Determine the hi defining the optimal policy for the tail

by solving the set of nc non-linear equations

hi
1− ρ∗

−r +
∑
j

λj(Fjγj + F̄jbj)

 = bi − γi,

where i = 1, . . . , nc, and ρ∗, Fj and F̄j depend on
{h1, . . . , hnc

}. Consequently, ξj(u) = hj for u ≥ τ ,
and also v(u) becomes fixed from (9) for u ≥ τ .

3) The optimal threshold ξj(u) for u ≤ τ depends on v(t)
for t ≥ u, and can be determined from

v(u+ ξj(u))− v(u) = bj − cj(u), ∀ j.

Consequently, we can determine both v(u) and ξj(u) for
u ≤ τ and for all j by solving the differential equation
(10) backwards from u = τ to u = 0.

4) If |v′(0)| < ε, accept the numerical solution and stop.
5) Update r according to the boundary condition v′(0) = 0,

and go to Step 2.
Note that without loss of generality, we can subtract bj from

class j admission and rejection costs. By doing this for each
class, the expressions simplify somewhat, and, e.g., (10) can
be written as

v′(u) = r̃ +
∑

j λj

[
Fj(ξj(u))

(
c̃j(u) + E[v(u+Xj)− v(u) |Xj<ξj(u)]

)]
,

(11)

where c̃j(u) = cj(u)−bj ≤ 0 is the admission cost and r̃ > 0
corresponds to the decrease in the cost rate when compared
to the policy that rejects all jobs, r̃ =

∑
j λjbj − r, i.e., r̃

represents a profit (or savings) rate. The boundary condition
remains the same, v′(0) = 0.

Example 2: Consider a system with two job classes. Class
1 represents real-time traffic with target deadline τ for some
small τ . The corresponding admission cost is c1(u) = 1(u >
τ) and rejection cost is b1 = 1. Class 2 represents bulk traffic
with parameters c2(u) = 0 and the constant b2 > 0 defines the
relative importance of the file transfer. It is straightforward to
determine the optimal class-specific admission control policies
based on Proposition 4.

IV. NUMERICAL EXAMPLE

Let us continue with Example 2 in the context of data
networks. Suppose we have two types of packets (job classes):

1) Classes have identical size distributions,

X1 ∼ X2 ∼ Exp(1).
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Fig. 5. Determination of the value function for the optimal admission control.

2) Classes have also identical arrival rates, λ1 = λ2 = 1/2,
so that the offered load is ρ = 1 (which is not an issue
as jobs can be rejected).

3) Class 1 packets represent real-time traffic with a rela-
tively short deadline at τ = 2:

c1(u) =

{
0, for u ≤ τ ,
1, for u > τ ,

b1 = 1.

4) Class 2 jobs represent bulk file transfer:

c2(u) = 0 for all u,
b2 = 1/4.

Thus, when u > τ , Class 1 packets will be discarded as
the blocking cost is the same as the cost of deadline violation
(i.e., a packet has become obsolete). Class 2 packets have the
same value even if delivered late. However, we can still reject
them in order to make room for Class 1 packets.

The optimal admission policy for this system can be de-
termined as described in Section III-B. Figure 5 depicts the
corresponding value function, obtained as a result of iteration.
Solving the system with r = 0.08 yields the lower curve.
However, as v′(0) is clearly positive, the boundary condition
is not satisfied. Similarly, the upper curve is obtained with
r = 0.16, which turns out to be too high. The correct mean
cost rate with the optimal admission control is r ≈ 0.118,
corresponding to the curve in the middle. In this case, the
boundary condition is satisfied, v′(0) = 0.

As discussed, the optimal admission policy is obtained at
the same time. This is depicted in Figure 6. We note that
Class 1 packets are rejected when u > τ , and otherwise they
are more likely to be admitted. In contrast, Class 2 packets
are admitted to the system also when u > τ given their size
is less than h∗2 ≈ 0.52.

V. PARALLEL SERVERS AND POLICY IMPROVEMENT

The standard application of the value functions of single
server queues has been policy improvement in the dispatching
systems with parallel servers [10], [11], [12], [13], [14], [15].
For simplicity of explanation, let us assume a single job class.



First we assume the static basic policy, e.g., the random
Bernoulli split (RND), so that the arrival process to server
i is a Poisson process with some rate λi,

∑
i λi = λ, and the

system decomposes into n independent servers. In general,
the chosen basic policy defines the server-specific parameters
(λi, Xi), which define a (fictitious) arrival process to each
server, and the corresponding (server-specific) value functions
vi(·), i = 1, . . . , n.

Let z = (u1, . . . , un) denote the state of the system. The
first policy improvement step gives us a policy, referred to
as FPI, that either rejects the job or assigns it to a queue,
whichever yields the smallest expected cost in the given state.
The cost of rejecting the job is

a0 = b,

whereas the admission cost to server i is

ai = ai(ui, x) = ci(ui) + vi(ui + x)− vi(ui).

where ci(ui) denotes the immediate cost of choosing server
i, and vi(·) is the value function of server i. The policy
improvement then gives the FPI policy,

α(z, x) = arg min
i

ai,

where action i = 0 corresponds to rejecting the given job. Note
that the basic policy may (tentatively) reject some jobs. For
example, under a heavy load a sensible default action could be
to reject large jobs. The dynamic FPI policy then deviates from
the default action and assigns a job to a server i if ai ≤ aj
for all j.

VI. CONCLUSIONS

We have considered the problem of admission control to
the single server M/G/1 queue in the multi-class setting with
general cost structure. In particular, jobs have class-specific
admission costs that depend also on the current waiting time.
The cost of rejecting a job depends only on the class, but not
on the current state of the system.

We analyzed the system in the framework of Markov deci-
sion processes. In particular, we showed that both the optimal
class-specific admission control, defined in terms of the critical
class-specific size thresholds ξj(u), and the corresponding
value function v(u), can be determined at the same time
when solving a particular differential equation backwards from
high workloads to an empty system with u = 0. The system
involves only one unknown parameter, the mean cost rate r,
that can easily be determined by iteration.

These expressions can be used to determine the optimal
admission control to a wide range of single server systems.
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Fig. 6. Optimal admission thresholds ξj(u) for Example 2 scenario.

Moreover, the knowledge of the value function can be used
in the context of parallel server systems to develop efficient
dispatching policies using first policy iteration.
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