
Controlling Queues with Constant Interarrival Times
Esa Hyytiä∗, Guðmundur Magńusson∗ and Rhonda Righter†

Department of Computer Science∗, University of Iceland
Department of Industrial Engineering and Operations Research†, University of California Berkeley

Abstract—We consider server systems with constant inter-
arrival times subject to arbitrary cost functions. This type
of systems arises when we have full control over arrivals.
Typical examples include situations where computers or network
elements schedule periodic updates at regular time intervals (cf.
cron daemon in unix systems), a congestion avoidance or load
balancing mechanism imposes regular inter-arrival times at a
lower level, and also in customer service and healthcare systems
where patients book appointments. In the basic case, known
as the D/M/1 queue, there is a single server and the service
times are independent and exponentially distributed. We study
different value functions for the D/M/1 queue that characterize
the expected cost difference in the infinite time horizon if the
system is initially in a given state instead of being in equilibrium.
When the arrival process is Poisson, the corresponding results
are compact and known. The fixed interarrival times complicate
the situation, and even the mean waiting time is harder to
characterize. We apply our results to develop a heuristic for
a dispatching problem, and evaluate the heuristic numerically.

Index Terms—D/M/1 queue, MDP, deadline, response time

I. INTRODUCTION

Servers preceded with buffers or queues arise in numerous
applications. Sometimes they are invisible to users, e.g., in
large cloud computing systems, and sometimes they are clearly
visible to us, such as waiting places and physical queues in
health clinics or taxi stands. Of course, in the former case
the end user experiences long queues as unexpected delays,
deteriorating the user experience of the service.

In this paper, we first consider a single-server queue with
constant interarrival times, and then apply our results to
systems with multiple servers. The constant inter-arrival times
tend to appear when we have full control over arrivals.
Interestingly, from the analysis point of view, a constant inter-
arrival time tends to be somewhat more challenging than the
usual assumption of having a Poisson arrival process.

Server systems receiving jobs or customers at (near) con-
stant inter-arrival times appear in different settings:

1) Constant inter-arrival times can result directly from the
system design, e.g., when periodic tasks need to be
executed. Typical examples includes situations where
computers or network elements schedule periodic up-
dates at regular time intervals (cf. cron daemon in unix
systems).

2) Similarly, an admission control mechanism in a multi-
server system may generate (approximately) constant
inter-arrival times to individual servers. For example,
timers can be used to implement a form of congestion
avoidance (gapping), which helps to stabilize the system
under high load.

3) In large systems of parallel servers, load balancing may
lead to (approximately) constant inter-arrival times. In
particular, with the Round-Robin dispatching policy,
the inter-arrival times to each server are asymptotically
constant.

4) Booking systems (at different time scales), where ap-
pointments or resources can be reserved in advance
based on time slots, are prime examples of constant
inter-arrival times. For example, in the healthcare sector
patients make reservations for doctor appointments, and
the arrival pattern thus has constant inter-arrival times.

The basic single-server system with independent and ex-
ponentially distributed service times is known as the D/M/1
queue. We focus on the D/M/1 queue subject to arbitrary costs
and study the value functions that characterize the expected
cost difference over an infinite time horizon if the system is
initially in a given state instead of being in equilibrium. When
the arrival process is Poisson, the results corresponding to the
mean response and waiting time are compact and known. Any
other interarrival distribution tends to complicate the situation.
For example, Erlang-distributed interarrival times result when
the round-robin routing is applied to a Poisson arrival process.
The Erl/G/1 queue was analyzed in [1]. Similarly, fixed
interarrival times complicate the situation, and even the mean
waiting time is harder to characterize. Note that the D/M/1
queue is obtained as the large system limit under round-robin
routing when the number of servers tends to infinity.

The main contributions of this paper are two-fold. First, we
provide means to develop cost-aware heuristic yet efficient
policies to control the aforementioned systems of parallel
servers. Second, like a “cartographer”, we explore the theo-
retical terrain of value functions related to queueing systems.
As mentioned, a large body of past work, as is customary in
queueing theory, assumes a Poisson arrival process. The lack
of memory of the exponential inter-arrival times then facilitates
the analysis and (i) value functions often have compact short
forms, and (ii) are easy to utilize when developing policy
iteration based dispatching policies. In this paper, we take an
“orthogonal” step and vary the arrival process (instead of the
service time distribution). This complicates both the derivation
of the value function (for a single queue), and its application
to systems of parallel queues.

The rest of the paper is organized as follows. First, in
Section II we introduce our model and notation, and give
a recursive method to compute the value function for the
D/M/1 queue subject to arbitrary cost structure. In Section III,
we consider rescheduling and dispatching problems, and in

Section IV we give some numerical examples. Section V
concludes the paper.

II. NUMBER-AWARE D/M/1 QUEUE

In this section, we consider the D/M/1 queue, where jobs
arrive at constant inter-arrival times β and their service times
are independent and exponentially distributed with parameter
µ. Hence, the offered load is

ρ =
1

µβ
.

The stability condition µβ > 1 says that a busy server should
process more than one job per time slot on average.

It turns out that the D/M/1 queue is analytically tractable.
Due to the lack of memory property of the exponential
distribution, it is easy to see that the number of potential
departures, D, during time β obeys a Poisson distribution with
parameter µβ.

We consider the so-called number-aware system, where the
state is defined by the number of jobs (in contrast to size-aware
systems, where exact service times are known). In particular,
we let Xt denote the state upon the arrival of the tth job
(excluding the new job). It is easy to see that Xt constitutes
a Markov chain with state space {0, 1, 2, . . .},

Xt+1 = (Xt + 1−Dt)
+
,

where Dt ∼ Poisson(µβ). From state n, the system can move
to any state in {0, . . . , n + 1}, depending on how many of
the present n + 1 jobs finish before the next arrival. Let
pn = P{D = n} and gn = P{D ≥ n}. Then the transition
probability matrix of the embedded chain Xt is

P =

g1 p0 0 0 0
g2 p1 p0 0 0
g3 p2 p1 p0 0 · · ·
g4 p3 p2 p1 p0

...
. . .

 ,

where
pn=

(µβ)n

n!
e−µβ

gn =

∞∑
j=n

pj .

It turns out that the mean waiting time and steady state
distribution1 are available for the D/M/1 queue. The stationary
distribution of the D/M/1 queue, for the number of jobs seen
by an arrival, Xt, is

πn = (1− δ)δn, where n = 0, 1, 2, . . .

where δ is the root of

x = e−µβ(1−x), (1)

1The global balance equation for an arbitrary state n ≥ 1 can be written
as p0πn =

∑∞
k=2 gkπn+k−1. Substituting a geometric trial, πn = (1 −

δ)δn−1, gives p0δ =
∑∞
k=2 gkδ

k , which is independent of n. As p0 =
1 − g1, the equation further simplifies to δ =

∑∞
k=1 gkδ

k , which has two
roots. The strictly positive root gives the correct distribution.

with the smallest absolute value [2].2 For comparison, the
stationary distribution seen by arriving jobs in the M/M/1
queue has the same geometric form,

πn = (1− ρ)ρn, where n = 0, 1, 2, . . .,

which is also the steady state distribution a random ob-
server sees, cf. Poisson Arrivals See Time Averages property
(PASTA).

The mean waiting time in the D/M/1 queue is

E[WD/M/1] =
δ

1− δ
· 1
µ
, (2)

Hence, δ corresponds to “an effective load” as the mean
waiting time in the M/M/1 queue (with Poisson arrival process)
is

E[WM/M/1] =
ρ

1− ρ
· 1
µ
. (3)

These are illustrated in Figure 1, where the benefits of a
deterministic arrival pattern become obvious. For example,
E[WD/M/1] < (1/2)E[WM/M/1] for all ρ < 1.

A. Cost structures

Cost structures can often be defined in different yet equiva-
lent ways. We associate the so-called immediate cost to arrival
instants.

Definition 1 (Cost structure). The system incurs cost c(n)
when an arriving job sees the queue in state n, i.e., there are
n jobs ahead, and the new job will be the (n + 1)st in the
queue.

In principle, the c(n) can be an arbitrary function, but
usually it is non-negative and non-decreasing in n.

Example 1 (Mean times). An appropriate cost functions for
sojourn time (response time) and waiting time (in queue) are

ct(n) =
n+ 1

µ
, (sojourn time) (4)

cw(n) =
n

µ
, (waiting time) (5)

and the corresponding mean costs we already know are

rt =
1

(1− δ)µ
,

rw =
δ

(1− δ)µ
.

Example 2 (Deadlines). Response times exceeding some
thresholds tend to lead to unsatisfactory user experiences and
even income losses [4]. Suppose that whenever the response
time of a job exceeds time τ a deadline violation occurs and a
fixed unit penalty cost is incurred [5], [6]. Given exponential

2In fact, this is true for the G/M/1 queue, where random variable A denotes
the interarrival time. Then pn =

∫∞
0 (µt)n/n! · e−µt dA(t) and 0 < δ < 1

is the root of equation x = A∗(µ(1 − x)) [3]. Hence, the results in this
section generalize to G/M/1 systems.

β

λ = 1
β

µ

D/M/1 Queue

∼Exp(λ)

λ µ

M/M/1 Queue

D/M/1
M/M

/1

0

0.
2

0.
4

0
.6

0.
8 1

0

0.2

0.4

0.6

0.8

1

Offered load ρ = (µβ)−1

E
ffe

ct
iv

e
lo

ad
δ

E[WD/M/1]
E[WM/M/1]

0

0.
2

0.
4

0.
6

0
.8 1

0

0.1

0.2

0.3

0.4

0.5

Offered load ρ = (µβ)−1

R
el

at
iv

e
E
[W

]

Fig. 1. D/M/1 vs. M/M/1: The left figure depicts the effective load δ, and the right figure the relative performance in terms of the mean waiting time.

service times with mean 1/µ, the (remaining) sojourn time of
the nth job in the FCFS queue is

Tn ∼ X1 + . . . Xn,

where Xi ∼ Exp(µ) are i.i.d. random variables. The sum of
exponential random variables obeys Erlang distribution, Tn ∼
Erlang(n, µ), and

P{Tn > τ} = e−µτ
(
1 + µτ + . . .+

(µτ)n−1

(n− 1)!

)
. (6)

Defining the immediate cost c(n) according to (6) gives

ctτ (n) = P{Tn+1 > τ}. (7)

which corresponds to the (mean) deadline violation cost for a
job arriving in state n.

Similarly, for the deadlines w.r.t. waiting time we have

cwτ (n) = P{Tn > τ}. (8)

Lemma 1. The deadline violation probabilities in the D/M/1
queue are

rtτ = P{T > τ} = e−µτ(1−δ), (9)

rwτ = P{W > τ} = δ e−µτ(1−δ). (10)

Proof. The number of jobs, N , in steady state obeys the
geometric distribution, N ∼ Geom(µ(1 − δ)). The sojourn
time T is a random sum,

T ∼ X1 + . . . XN ,

where the Xi ∼ Exp(µ) are i.i.d., and as the “geometric sum”
of exponentially distributed random variables is exponentially
distributed, we have

T ∼ Exp(µ(1− δ)),

yielding (9). For the deadline with respect to waiting time,

P{W > τ} =
∞∑
n=1

(1− δ)δne−µτ
(
1 + µτ + . . .+

(µ/τ)n−1

(n− 1)!

)
= δ

∞∑
n=0

(1− δ)δne−µτ
(
1 + µτ + . . .+

(µ/τ)n

n!

)
yielding P{W > τ} = δ P{T > τ}.

τ=0

τ=4

M
/M
/1

D
/M
/1

M
/M
/1

D/M/1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Offered load ρ

D
e
a
d
li
n
e

v
io

la
ti
o
n
s

Fig. 2. Deadline violation probability for waiting time depicted for the D/M/1
and M/M/1 queues with µ = 1 as a function of the offered load ρ. Dashed
curves correspond to a very strict target deadline, τ = 0, and the solid lines
to a more reasonable target deadline, τ = 4.

The above cost functions give some insight on the range of
performance metrics one could easily define for this model.
The corresponding mean costs give the steady-state perfor-
mance for single-server systems.

Remark 1. Note that δ of the D/M/1 queue is such that

δ = P{T > β} = 1− P{idle in a slot of length β}.

Similarly, with the M/M/1 queue, we also have

ρ = P{T > A},

where A ∼ Exp(λ) is an interarrvial time.

Example 3. Let us compare the performance of the D/M/1
and M/M/1 queues in terms of the deadline violation metric
for waiting time. We let µ = 1 and then vary the offered load
ρ. The deadline is assumed to be either very strict, τ = 0,
or a more reasonable one, τ = 4. The results are depicted in
Figure 2, which again highlight the benefits of having more
regular inter-arrival times.

It is worth noting that the above example illustrates also the
performance of large parallel server systems subject to random
and round-robin routing, as discussed later in Section III.

B. Value function for D/M/1

In contrast, a value function characterizes how “good” or
“bad” some state is relative to the mean performance of the
same system. In particular, it enables one policy improvement
step, yielding a better (control) policy. Formally, the value
function (without discounting) is defined as follows:

Definition 2 (Value function). The value function is the
expected cost difference in the infinite time-horizon between
a system initially in state n and a system in equilibrium,

vn , lim
t→∞

E[Vn(t)− rt], (11)

where the random variable Vn(t) denotes the total costs
incurred during time (0, t) when the system is initially in state
n, and r is the mean cost rate.

In our case, state n denotes the number of jobs in the D/M/1
queue immediately before an arrival. Further, we assume that
present jobs have paid upon arrival according to c(n), e.g.,
according to their expected waiting time (see Example 1).
Then a sufficient state description is the number of jobs in
the system, Xt = n. The corresponding value function is
referred to as the number-aware value function, for which it
is straightforward to give a recursive expression by means of
dynamic programming.

Theorem 1. The value function for the number-aware D/M/1
queue with respect to arbitrary immediate costs c(n) is given
by the recursive function,

vn+1 = (r − c(n) + vn) · eµβ −
n∑
j=1

(µβ)n+1−j

(n+ 1− j)!
· vj , (12)

for n = 0, 1, 2, . . ., with the convention that v0 = 0.

Proof. The value function vn satisfies the dynamic program-
ming equation (see Bellman [7], or Howard [8]),

vn =
one time step︷ ︸︸ ︷
c(n)− r +

mean difference in costs incurred in the future︷ ︸︸ ︷
n∑
j=0

P{D = j} · vn+1−j + P{D ≥ n+ 1} · v0,

for n = 0, 1, 2, . . ., where r is the mean cost (rate), and D
denotes the number of potential departures in one time step,
D ∼ Poisson(µβ). Solving for vn+1, one obtains

vn+1 = (r − c(n) + vn) · eµβ −
n∑
j=1

(µβ)j

j!
· vn+1−j

−

eµβ − n∑
j=0

(µβ)j

j!

 · v0 n = 0, 1, 2, . . .

As a constant term in the value function is immaterial, we can
set v0 = 0, yielding

vn+1 = (r − c(n) + vn) e
µβ −

n∑
j=1

(µβ)j

j!
vn+1−j ,

for n = 0, 1, 2, Reversing the order in the summation then
gives (12).

Note that Eq. (12) expresses vn+1 as a function of
v1, . . . , vn, except for n = 0, which gives v1 as a function
of v0 that we chose to set to zero, v0 = 0. In principle, we
can thus compute vn for any (finite) n recursively.

Note also that the vn’s characterize the deviation from the
mean cost rate from the time instant just prior the arrival. For
the time instants right after the new job has joined the queue,
we have v∗n+1 = vn − (c(n) + r). As the constant offset in
value functions is immaterial, adding c(0)− r gives us

v∗n+1 = vn − (c(n)− c(0)), n = 0, 1, 2, . . . (13)

so that v∗1 = 0. The state n = 0 after “an arrival” is transient.
The corresponding value function is

v∗0 = (c(0)− r)− v∗1 = c(0)− r.

Remark 2 (M/M/1 Queue). Consider the M/M/1 queue with
immediate costs c(n). An equivalent recursive form for the
corresponding value function (upon an arrival to state n) is

vn+1 = (r − c(n) + vn) ·
1

1− q
−

n∑
j=1

qn+1−j · vj , (14)

which follows from the observation that with the exponentially
distributed inter-arrival times of the M/M/1 queue, the number
of potential departures before the next arrival obeys the
geometric distribution with parameter q = µ/(µ + λ). For
example, the immediate cost for sojourn time is given by (4),
and the mean sojourn time is r = (µ− λ)−1, yielding

vn =
n(2 + ρ+ ρn)

2µ(1− ρ)
,

whereas for an arbitrary time instant (without an arrival), we
would have

ṽn =
n(n+ 1)

2µ
· ρ

1− ρ
,

which corresponds to the jobs arriving in future. Adding the
expected sojourn time of the present n jobs, n(n + 1)/(2µ),
into the above then gives

v′n =
n(n+ 1)

2(µ− λ)
,

which is the value function for a system where costs are
incurred continuously at the rate equal to the number of jobs
in the system [9], [10], [11].

Example 4. As an example, the first four relative values of
the D/M/1 queue with respect to the mean waiting time costs,
cw(n) = n/µ, are

v0 = 0,

v1 =
δ

1− δ
· e

µβ

µ
,

v2 =

[
(eµβ + 1− µβ) · δ

1− δ
− 1

]
· e

µβ

µ
,

v3 =

[(
eµβ

(
eµβ + 1− 2µβ

)
+ 1− µβ +

(µβ)2

2

)
δ

1− δ

−
(
eµβ + 2− µβ

)]
· e

µβ

µ
,

where δ is the root of (1).

Example 5. The first few relative values with respect to
deadline on response time, given by (7), in the D/M/1 queue
are

v0 = 0,

v1 = eµ(β−τ)
(
eδµτ − 1

)
,

v2 = eµ(β−τ)
(
eµ(β+δτ) + (1− βµ)eδµτ + µ(β − τ)

− eβµ − 1

)
,

v3 = −1

2
eµ(β−τ)

[
(4βµ− 2)eµ(β+δτ) − 2e2βµ+δµτ

− (βµ(βµ− 2) + 2)eδµτ + eβµ(−4βµ+ 2µτ + 2)

+ µ(β − τ)(βµ− µτ − 2) + 2e2βµ + 2

]
,

where δ is the corresponding constant from the steady-state
distribution.

III. APPLICATIONS

In this section, we demonstrate the possible applications of
the new results.

A. Rescheduling appointments

The D/M/1 queue serves as a good model, when patients
make appointments to a doctor, and time slots are available,
e.g., once every 30 minutes. Hence, by design, we have full
control over the arrival stream, whereas the service times
remain random with a known distribution (exponential in this
case). Stability requires that the mean service time be shorter
than inter-arrival times. At the same time, economic interests
and efficient use of server capacity (e.g., doctors) encourage
us to operate as close to ρ = 1 as possible (through an
appropriately chosen time interval β). However, the perceived
quality of service improves as ρ is decreased. Consequently,
in practice one strives to strike a balance betweeen conflicting
objectives.

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4 Timeslot 5

Doctor 4

Doctor 3

Doctor 2

Doctor 1

Fig. 3. Appointment system with 4 “servers”.

A health clinic often has multiple doctors, which corre-
sponds to an appointment system with parallel servers. For
simplicity, we assume a fully booked system of n servers,
where a batch of n (identical) jobs arrive at the start of every
time slot. The graph in Figure 3 depicts a sample scenario with
4 servers (doctors in a health clinic). Patients have booked
appointments and the schedule is full. In most cases, the visit
ends in time and the next patient gets in at the scheduled
time, W = 0. However, the 2nd patient of Doctor 3 spends
more than the scheduled time, which causes an extra waiting
time for the following two patients (W > 0). If the backlog
for one doctor increases too much, it is probably useful to
direct one of her/his patient to some other doctor. The so-called
rescheduling policy, denoted by α makes such decisions.

If jobs and servers are identical, the obvious solution is to
balance the load by using the Join-the-Shortest-Queue (JSQ)
[12]. However, when servers are heterogeneous in terms of
speed or cost, or if jobs, e.g., have different holding costs,
it may be beneficial to direct more jobs to some server(s)
than to others. Here we assume that the patients dislike being
transferred to a doctor other than the one they booked, so we
introduce a fixed extra penalty cost e for each such action.

The default policy α0 thus assigns each job to its respective
server (doctor) that was originally scheduled for them. In this
case, the system decomposes into n parallel and independent
D/M/1 queues, and the queues can be analyzed separately. In
particular, the value function of the system is the sum of the
queue-specific value functions.3

A dynamic policy would then occasionally deviate from the
default action. We utilize the value functions to this end.

1) Admission costs: Now we are ready to determine near
optimal rescheduling actions based on the value functions
discussed in the previous section.

Let queue q be in state n (it has n jobs just before the time
of the batch arrival), and suppose that in this decision round
we consider assigning k new jobs to it. Let v∗n denote the
relative value when the system is observed immediately after
a job has arrived, as in (13). These two value functions have
a simple relationship,

vn = c(n)− c(0) + v∗n+1, n = 0, 1, 2, . . .

where the constant offsets are chosen so that v0 = v∗1 = 0.
With these, the admission cost of k jobs to queue q is

an(k) = c(n) + . . .+ c(n+ k − 1) + v∗n+k − v∗n,

3All this is in analogy with the more common setting where the arrival
process is Poisson.

i.e., the sum of the costs the k new jobs incur and the
penalty imposed on later arriving jobs, characterized by the
corresponding value function. As was the case for the value
function, a constant offset can be subtracted from admission
costs. In the expression above, the term −v∗n corresponds to
this (it is independent of the scheduling action assigning the n
jobs to n servers). Here the baseline is thus chosen so that not
reassigning the default patient has zero cost. The additional
annoyance cost of reassigning k−1 jobs to server q, in addition
to its originally assigned job, is

an(k) = (k − 1)+ · e,

where (x)+ = max{0, x} and e is a free parameter.

Example 6. With the waiting time metric, c(n) = n/µ, the
admission cost for k new jobs is

an(k) =
n+ (n+ 1) + . . .+ (n+ k − 1)

µ
+ v∗n+k − v∗n,

which reduces to

an(k) =
k(2n+ k − 1)

2µ
+ v∗n+k − v∗n.

In particular, assigning no jobs has zero cost, an(0) = 0, and
the cost of assigning a single job is

an(1) =
n

µ
+ v∗n+1 − v∗n,

so that the first few admission costs for waiting time are as
follows:

n an(1)
0 r
1 r eµβ

2 eµβ(eµβ − µβ) r − (eµβ − 1) 1µ
3 eβµ

(
eβµ(eβµ − 2βµ) + 1

2 (βµ)
2
)
r

−
(
eβµ

(
eβµ − βµ+ 1

)
− 2
)

1
µ

Even though the expressions become lengthy, numerical
values are easy to compute using the recursive expression.

Note that it is possible to generalize the model and our
results to include an option to reject or reschedule jobs.
Such an action could have a fixed or job-specific cost. More
generally, we might have a rescheduling cost that is decreasing
in the advance warning time. That is, at the start of a slot, given
the current number, we might want to cancel/reschedule the
arrival in the next slot. We leave such extensions to the reader.

B. Dispatching system

Our next application is a dispatching system, in which
jobs arrive individually at constant time-intervals β and are
routed immediately upon arrival to one of the k available
servers. This is illustrated in Figure 4. The service time at
server i is exponentially distributed with rate µi, i.e., we allow
heterogeneous servers. With identical servers and identical
jobs, JSQ is often the optimal policy. However, if jobs have
different holding costs or (some) jobs have deadlines, the
situation is more interesting and policy iteration is likely to
give a better policy than JSQ.

λ = 1/β

Dispatcher

Parallel servers

µ

µ

µ

Fig. 4. Model for a parallel server system, where the inter-arrival time between
jobs is constant β and service times are independent and exponentially
distributed with mean 1/µ.

The fact that the arrival process to every server has a
“memory” complicates the situation somewhat. Suppose our
(basic) policy is round-robin:

Definition 3 (Round-robin). The round-robin (RR) dispatching
policy assigns jobs sequentially to servers in a fixed order:
1, 2, . . . , k, 1, 2,

As a result, the arrival process to every server has determin-
istic time intervals βn, and the system decomposes similarly as
with the rescheduling problem in the previous section. Round-
robin is known to be the optimal policy in many settings, when
the available information is basically the past decisions (and
that the system was initially, e.g., empty) [13], [14].

However, the moment we deviate from the basic routing
pattern and assign a job to server j instead of server i, the
situation becomes more complex. Namely,

• At every decision point, all servers except one are now
in the middle of their respective arrival cycles (phases)
with the remaining time being iβ, i = 1, . . . , (k − 1).

• However, our value functions hold for the time instants
corresponding to the arrival (i = 0).

• Thefore, we will need to compute the expected value for
each server after the current decision.

• In order to get “the best” understanding about the current
state and the cost of respective actions, one should
consider all possible orders of the phases (of RR). This
corresponds to k! different permutations of the sequence
{0, 1, . . . , (k − 1)}, which can be a large number.

• However, intuitively, a good heuristic rule for RR with
identical servers is to order the queues in the increasing
order of their queue lengths. Consequently, when k is
large and a faster algorithm is needed, the search space
can be pruned, e.g., by considering only the sequences
where the first server is varied and the rest are ordered
according to their queue lengths (correspondingly, we
would have k sequences instead of k!).

Thus, for an informed decision, we need to compute the
expected value of each server at these intermediate time
instants based on the number of jobs currently in them. Given
the current state of a server is n and the next job will
exceptionally arrive after time t = iβ, instead of immediately
(t = 0), we proceed similarly as we did in the proof of

Algorithm 1 FPI-based dispatching policy
function FPI(n1, . . . , nk) . Jobs in each server

a← 0
for π in all permutations of {1, 2, . . . , k} do

w ← 0
for i = 1, . . . , k do

j = π(i) . Server for the ith job
w ← w + v

(j)
nj ((i− 1)β) . Add value function

end for
if a = 0 or wmin > w then

a = π(1) . Action for this job
wmin = w

end if
end for
return a . Action with the lowest relative value

end function

Theorem 1:

v∗n(t) =

n−1∑
j=0

P{Dt = j} · vn−j + P{Dt ≥ n} · v0, (15)

where t ≥ 0. The above expression gives the expected value
of the queue given its current state is n and the next job is
bound to arrive after time t. As before, the random variable
Dt corresponds to the number of possible departures, Dt ∼
Poisson(µt).

When jobs are not identical and a job’s type, or class,
becomes known upon arrival (before the dispatching decision),
such information should be taken into account when evaluating
different actions. This affects only the queue receiving the
current job, and the refined value function for it is (i = 0)

v∗n = c∗(n)− c(n) + vn, (16)

where c∗(n) gives the (expected) cost of the given new job
(i.e., conditioned on the information that got revealed upon
job’s arrival), and c(n) is the corresponding cost on average
(over all jobs).

Definition 4 (Policy iteration). The policy iteration based dis-
patching policy routes a new job to the server that minimizes
the expected future costs obtained using (15) (for i > 0) and
(16) (for i = 0). We call this policy FPI for First Policy
Iteration (step).

The concrete steps involved are described in Algorithm 1,
which evaluates the value function for all possible ways to
order the servers given the RR policy is used for this and future
jobs. The order yielding the smallest (expected) cost is chosen.
The algorithm assumes that queue-specific value functions
v
(i)
n (t) for queue i are available, which in turn depend on the

chosen cost function and basic policy. In practice, one is likely
to compute the v(i)n , i.e., the value functions for time instants
upon arrival, and then utilize (15) on the fly to compute the
necessary value functions for states in between the arrivals.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RR

JSQ

M
/M

/1

2 servers

3 servers

4 servers

(1
-ρ

)
E

[
W

]

Offered load ρ

RND

Fig. 5. Mean (scaled) waiting time with 2, 3 and 4 identical servers. FPI
is omitted as it yields JSQ in this case. RR gives the same result with any
number of servers as the arrival process to each server remains the same.

IV. NUMERICAL EXAMPLES

We consider the following heuristic policies:
1) Random split (RND) which assigns jobs independently

to k servers with probabilities pi ∝ µi, where µi is the
service rate of server i, where i = 1, . . . , k.

2) Round-robin assigns jobs sequentially to servers. By
default, the sequence is 1, 2, . . . , k, 1, 2,

3) Join-the-Shortest-Queue (JSQ), assigning jobs to the
server with the least number of jobs,

αJSQ = argmin
i

{ni},

where ni denotes the number of jobs in server i.
4) Shortest-Expected-Delay (SED) takes the service rates

into account and chooses the server according to

αSED = argmin
i
{ni/µi}.

With JSQ and SED, ties are resolved in favor of the server
with a smaller index. JSQ is often the optimal policy when
both servers and jobs are identical (see, e.g., [12], [13]). Note
that all policies are expected to be stable when ρ < 1.

A. Identical Parallel Servers

First we assume a system that consists of identical servers
with rates µ. Figure 5 depicts the mean waiting time, scaled by
1−ρ, as a function of ρ. The solid lines correspond to the two
server systems. Basically, we can make two observations. First,
the results quantify benefits from having more state informa-
tion available (RR knows the past decisions, JSQ the current
number of jobs in each server). Second, the performance with
RND gets worse as the number of servers increases, whereas
with JSQ the situation improves (and JSQ is equivalent to
SED in this case). In fact, it turns out that in a large system,
as k →∞, RND yields k independent M/M/1 queues, whereas
JSQ finds an idle server for every new job (in the limit when
k →∞).

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RND

RR

SED

JSQ (and FPI)

FPI

D
e
a
d
lin

e
 v

io
la

ti
o
n
 p

ro
b
a
b
ili

ty
 (

re
l.
)

Offered load ρ

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RND

RR

SED

JSQ (and FPI) FPI

(1
-ρ

)
E

[
T

]

Offered load ρ

Fig. 6. The relative deadline violation probability (left) and the (scaled) mean waiting time (right) with heterogeneous service rates. RR is based on the load
balancing sequence 1, 2, 1, 3, 1, 2,

B. Heterogeneous Parallel Servers

The situation becomes more interesting when servers are
not identical. Thus, next we assume a system consisting of
three heterogeneous servers:
• Server 1 with service rate 2µ,
• Server 2 with service rate µ,
• Server 3 with service rate µ.

The primary Server 1 is twice as fast as the two secondary
servers. In this case, the constant inter-arrival times can be
preserved by a round-robin type of sequence 1, 2, 1, 3, 1, 2, . . .,
which assigns every other job to Server 1, and the rest
alternatively to Server 2 and 3. We let α0 denote this policy.

In addition to RR, we evaluate three other heuristic policies,
RND, JSQ and SED, and FPI based on RR. As for the
performance metrics, we consider the following two:

1) Mean response time E[T]
2) Deadline violation probability for response time with

τ = 4/µ, so that the risk of deadline violation with the
slower servers is of some concern even if a server is
currently idle.

Figure 6 depicts the simulation results in the heterogeneous
scenario with respect to the deadline on response time at τ =
4/µ (left) and the (scaled) mean response time (right). RR
offers a significantly better performance than RND, but as in
the case of identical servers, it loses to JSQ and other dynamic
policies (SED and FPI). Note that FPI is based on RR.

C. Non-identical Jobs with Heterogeneous Servers

In our final numerical experiment, each job is associated
with a job-specific holding cost, which are assumed to be
independent uniformly distributed random variables, H ∼
U(0, 2). Each job then incurs costs at the given rate during its
whole sojourn time, and the task is to minimize the product
E[HT]. Otherwise, we assume the same heterogeneous system
of three parallel servers, and apply the same set of heuristic
policies. The numerical results are depicted in Figure 7. In
this case, we have chosen SED as the reference point. Note

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RND

RR

SED

JSQ

FPI

R
e
la

ti
v
e
 m

e
a
n
 c

o
s
t

Offered load ρ

Fig. 7. Relative costs with three heterogeneous servers when jobs have varying
holding costs. When ρ is very small, the heuristic JSQ and SED policies work
well, but as ρ > 0.6, the FPI policy offers the best performance.

that SED corresponds to greedy selfish jobs minimizing their
individual costs. Interestingly, SED tends to have a clearly
worse performance than JSQ. FPI, being an adaptive cost-
aware policy, adapts to the new cost structure and has the best
performance when the load is medium or high (around 0.6 or
higher).

Similarly, the FPI approach can be applied to scenarios
where processing a job has a different cost at each server. For
example, extra servers (virtual machines) could be available
for rental at some higher cost.

V. CONCLUSIONS

In this paper, we analyzed the number-aware D/M/1 queue,
where the state information is the number of jobs. The arrival
process is deterministic and jobs are assumed to arrive at
fixed time intervals. Such scenarios arise, e.g., in booking
systems and when the system has control over arrivals. We
studied the D/M/1 queue in the context of Markov decision
processes. First, we gave a recursive formula to compute the

value function with respect to an arbitrary cost function. As
example cases, we considered the mean waiting and response
time, as well as, deadlines on waiting and response time.

The availability of the value function allows one to develop
sound control strategies for the related systems. For example,
we can reschedule appointments in a health clinic (depend-
ing on the objective functions), or we can develop efficient
cost-aware policies for dispatching jobs to parallel servers.
In contrast to past work, the assumed arrival process has
memory, which complicates its application to the dispatching
problem. However, as demonstrated, this can be worked out
by an appropriate conditioning, which resembles the analysis
of Erl/G/1 queues [1] and the lookahead idea proposed in
[15]. In our numerical examples, the resulting FPI policies
performed on par with the dynamic JSQ and SED policies.
The shortcoming of JSQ and SED is that they are blind to
cost structures and job-specific attributes such as high and
low priority jobs having, e.g., different deadlines and/or cost
parameters. In contrast, the FPI approach extends to all such
cases and, in this sense, it is superior to the aforementioned
heuristics.

ACKNOWLEDGEMENTS

This work was supported by the University of Iceland
Research Fund in the RL-STAR project.

REFERENCES

[1] E. Hyytiä and S. Aalto, “On round-robin routing policy with FCFS and
LCFS scheduling,” Performance Evaluation, vol. 97, pp. 83–103, Mar.
2016.

[2] B. Jansson, “Choosing a good appointment system-a study of queues of
the type (D, M, 1),” Operations Research, vol. 14, no. 2, pp. 292–312,
1966.

[3] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley Interscience,
1975.

[4] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[5] E. Hyytiä, R. Righter, and J. Virtamo, “Meeting soft deadlines in single-
and multi-server systems,” in 28th International Teletraffic Congress
(ITC’28), Würzburg, Germany, Sep. 2016.

[6] E. Hyytiä, R. Righter, O. Bilenne, and X. Wu, “Dispatching discrete-
size jobs with multiple deadlines to parallel heterogeneous servers,” in
Systems modeling: methodologies and tools, ser. EAI/Springer Innova-
tions in Communications and Computing, A. Puliafito and K. Trivedi,
Eds. Springer, 2018, pp. 29–46.

[7] R. Bellman, Dynamic programming. Princeton University Press, 1957.
[8] R. A. Howard, Dynamic Probabilistic Systems, Volume II: Semi-Markov

and Decision Processes. Wiley Interscience, 1971.
[9] K. R. Krishnan, “Joining the right queue: a Markov decision rule,” in

Proc. of the 28th Conference on Decision and Control, Dec. 1987, pp.
1863–1868.

[10] S. Aalto and J. Virtamo, “Basic packet routing problem,” in The
thirteenth Nordic teletraffic seminar NTS-13, Trondheim, Norway, Aug.
1996, pp. 85–97.

[11] P. Whittle, Optimal Control: Basics and Beyond. Wiley, 1996.
[12] W. Winston, “Optimality of the shortest line discipline,” Journal of

Applied Probability, vol. 14, pp. 181–189, 1977.
[13] A. Ephremides, P. Varaiya, and J. Walrand, “A simple dynamic routing

problem,” IEEE Transactions on Automatic Control, vol. 25, no. 4, pp.
690–693, Aug. 1980.

[14] Z. Liu and R. Righter, “Optimal load balancing on distributed homoge-
neous unreliable processors,” Operations Research, vol. 46, no. 4, pp.
563–573, 1998.

[15] E. Hyytiä, “Lookahead actions in dispatching to parallel queues,”
Performance Evaluation, vol. 70, no. 10, pp. 859–872, 2013.

