
Evaluating Rare Events in
Mission Critical Dispatching Systems

Esa Hyytiä∗ and Rhonda Righter†
Department of Computer Science∗, University of Iceland

Department of Industrial Engineering and Operations Research†, University of California Berkeley

Abstract—Dispatching systems, where jobs are routed to
servers immediately upon arrival, appear frequently in parallel
computing systems. With a dynamic dispatching policy, the
system is generally analytically intractable and performance
evaluation is carried out by means of Monte Carlo simulations.
A typical performance metric is the mean response time which
is often easy to estimate. In contrast, we consider systems where
events generating costs are extremely rare. In our reference
system, jobs have deadlines for waiting time. When deadlines
are loose when compared to the system’s load, novel rare
event simulation techniques must be applied. We consider both
conditioning and importance sampling to this end. The proposed
techniques are illustrated in numerical examples, where we dis-
cover interesting performance relationships among the classical
dispatching policies; Random split (RND), Round-robin (RR),
Join-the-shortest-queue (JSQ) and Least-work-left (LWL).

I. INTRODUCTION

Many frequently used services in today’s Internet, such
as Facebook and Google search, are realized using a set of
parallel servers. Similarly, in cloud and super computing a
vast amount of information is processed in parallel. Multicore
CPUs are an everyday commodity in embedded systems. In
daily life, we have parallel servers in supermarket queues,
call centres (help desks), and at airports (check in counters).
Many services, such as those in above, can tolerate a relatively
high load as occasional failure to respond quickly is generally
accepted. In contrast, in mission critical systems, such as
control systems for autonomous driving, or emergency services
within healthcare, there is more at stake than, e.g., if a response
to a web query is slightly delayed. In mission critical systems,
(computing) jobs or tasks may have strict target deadlines that
should be met with a very high probability. Consequently, the
average load cannot be too high without jeopardizing the basic
operation.

The above systems can be modelled as dispatching systems,
which consists of a set of parallel servers and a dispatcher that
assigns jobs immediately upon arrival to one of the available
servers. Scalability and strict real-time requirements often
deter other load balancing methods (e.g., a common queue).

In this paper, we study heterogeneous dispatching systems
and focus on the deadline cost structure, where each job has a
maximum allowable waiting time, denoted by τ . If the maxi-
mum waiting time is exceeded, a deadline violation occurs and
the system incurs a unit cost. However, deadline violations are
rare if the job arrival rate λ is small relative to the number of
servers and τ . We refer to this type of dispatching system as

a mission critical system, as the total service rate (processing
capacity) is assumed to be set sufficiently high to ensure that
almost all jobs receive service in time.

Due to the infinite, often uncountable, state space, the exact
performance analysis of a dispatching system is generally
beyond analytical means, and one resorts to Monte Carlo
simulations. However, deadline violations being rare events in
mission critical systems means that straightforward simulation
efforts are in vain as reasonable confidence intervals would
require prohibitively long simulation runs.

Splitting is one common rare-event simulation technique [1],
[2], [3], where multiple independent simulation trajectories are
launched when the process is about to enter an interesting
area in the state-space (e.g., a queue length increases beyond
some value). Consequently, more simulation effort is put
into trajectories that are more likely to include the sought
rare events. Our first method, paired path protocol (PPP),
is based on conditioning and is similar to splitting, but we
explicitly include (and appropriately weight) trajectories from
each “level” (cf. stratified sampling). Hence, one trajectory in
each sample is guaranteed to enter the most interesting region.
Another standard technique is importance sampling, where the
underlying probability mass is modified in such a way that
the interesting events appear more frequently [4], [3], [5]. Our
second method is an application of importance sampling.

The main contribution of this paper is the design of the
aforementioned efficient simulation methods to evaluate the
performance of a dispatching policy in a mission critical sys-
tem. We also provide interesting numerical observations for the
relative performance between some well-known dispatching
policies at the limit when the offered load tends to zero.

The rest of the paper is organized as follows. First, in
Section II we introduce formally the dispatching system con-
sidered in this paper. In Section III, we discuss the reasons
for the impracticality of straightforward simulation when the
system’s load is light. Motivated by this, in Sections IV and V
we then develop two advanced simulation techniques that are
subsequently illustrated in Section VI. Section VII concludes
the paper.

II. MODELING AND PERFORMANCE METRICS

We make the standard assumptions. Jobs arrive accord-
ing to a Poisson process with rate λ, job sizes are i.i.d.,
Xi ∼ X , parallel servers are heterogeneous with service rates
ν1, . . . , νκ, and the jobs are routed using a dispatching policy

λ
Arriving jobs

Servers

ν4

ν3

ν2

ν1

Dispatcher

Fig. 1. Dispatching system with κ = 4 parallel servers.

α immediately upon arrival. The jobs incur a cost if they do
not start service by time τ , which is referred to as the deadline
for the (in-queue) waiting time [6]. Our performance metric is
the mean cost per job, i.e., the deadline violation probability,
denoted by η.

A busy period starts when a job arrives to an empty system
and continues until all servers are idle again. We can write
(cf., renewal reward)

η =
E[C]

E[N]
,

where random variables C and N denote the incurred costs
and the number of jobs during a busy period, respectively. The
task of the dispatching policy is to assign jobs to servers so
as to minimize η.

In general, we assume that the offered load,

ρ =
λE[X]∑

νi
,

is small, and consequently, deadline violations are rare with
any reasonable policy α.

We note that a real system may also process low priority
jobs in the background. Our assumption is that preemptive
priority scheduling (see, e.g., [7]) at each server makes the
high priority jobs immune to possible low priority jobs. This
allows us to omit them from the model and cost structure, and
focus our attention on the high priority jobs that are served in
the first-come-first-server (FCFS) order.

With a static dispatching policy, the system decomposes into
κ independent M/G/1 queues that can be analyzed separately.1

However, with dynamic dispatching policies, such as join-
the-shortest-queue (JSQ), the system becomes analytically
intractable and one must resort to simulations.

A straightforward Monte Carlo simulation of m busy peri-
ods yields a sequence of (total costs, number of jobs) pairs,

(C1, N1), (C2, N2), . . . , (Cm, Nm)

where the (Ci, Ni) are i.i.d. (Ci, Ni) ∼ (C,N), and

η̂ =

∑m
i=1 Ci∑m
i=1Ni

provides an estimate of η. When λ is small, (Ci, Ni) is often
(0, 1).

1The waiting time distribution in the M/G/1 queue is available in closed
form when the service times are, e.g., exponentially distributed or constant.

III. RARE EVENTS WITH DEADLINES

In this section, we discuss the challenges that a straight-
forward simulation faces under low load. This motivates
the development of advanced simulation techniques later in
Sections IV and V.

As the first job of a busy period receives service im-
mediately, a busy period must consist of at least two jobs,
N ≥ 2, before a deadline violation may occur. In practice,
with many dynamic policies, the number of jobs needed for a
deadline violation to occur is more than the number of servers.
Intuitively, this means that deadline violations under low load
happen only when unusually many jobs arrive in a burst.

When ρ → 0, most jobs see an empty system, E[C] → 0,
E[N] → 1 and η → 0 with any dispatching policy α. In
this sense, every α is “optimal” at this limit. However, we
may want to know, e.g., how fast E[C]→ 1. Moreover, when
comparing two dispatching policies, α1 and α2, the interesting
quantity is, e.g., the performance ratio

θ =
η2

η1
.

It is unclear what the limiting value of θ might be as λ→ 0.
In fact, it turns out that the simulation noise about the E[C]
becomes an issue, whereas a small uncertainty in E[N] is
unimportant.

Lemma 1 Suppose that C = 0 when N < k and define

Z , P{N ≥ k} · (C | N ≥ k) = p · C ′, (1)

where C ′ corresponds to a sample from a more interesting
subset where N ≥ k and C is more likely to be positive. Then

E[Z] = E[C], (2)

V[Z] = pV[C]− (1− p) E[C]2. (3)

Proof: For the mean (2), we have

E[C] = (1− p) E[C |N < k] + pE[C |N ≥ k] = E[Z].

Similarly for the variance,

V[C] = E[C2]− E[C]2

= (1− p) E[C2 |N < k] + pE[C2 |N ≥ k]− E[C]2

= (1/p) E[Z2]− E[C]2

=
1

p
V[Z] +

1− p
p

E[C]2

which reduces to (3). �
According to Lemma 1, taking samples of Z instead of C

yields an unbiased estimator for E[C] with a strictly smaller
variance when p < 1. In other words, one should exclude the
samples with no costs systematically if possible.

Conversely, as V[Z] ≥ 0, we have an elementary lower
bound for the squared coefficient of variation,

SCV(C) =
V[C]

E[C]2
≥ 1− p

p
.

Hence, when most samples incur no costs, i.e., when p is small,
SCV(C) explodes and estimating the mean becomes difficult.

C = 0 C = 0 C = 0

N = 1 N = 2 N ≥ 3

C > 0
the interesting
subset!

Fig. 2. Partitioning the sample space in an example case with two servers
and JSQ. Busy periods with N < 3 jobs are guaranteed to incur no costs.

A. Increasing the odds

Suppose a busy period starts with a size x1 job, and that
the dispatching policy α assigns the first job to server j. The
service time of the first job is s1 = x1/νj . If λ is small, there
is a high chance that no other jobs arrive during time s1 and
C = 0, which we wanted to avoid. We can proceed two ways:
• Idea 1: Condition on more jobs arriving during the busy

period. This means that at least one more job arrives
during the service time s1 of the first job starting the
busy period. After that, we can condition again that the
third job arrives before the system becomes idle, etc.

• Idea 2: Adjust the arrival rate from the nominal λ to a
bit higher λ∗ so that it is more likely that a busy period
consists of more than one job.

Note that the latter is an application of importance sampling
(IS) [4], [3], [5]. The idea is effectively the same as in
[8], where the authors argued that for the classical M/M/1
queue, the optimal simulation approach for the mean time to
reach an excessively large backlog of N jobs is obtained by
interchanging the arrival rate λ and the service rate µ. The
GI/GI/m queue in the same setting was later considered in
[9]. The motivation for large N was buffer overflows, e.g., in
routers. For more details, see [3]. In our case, N would be
much smaller and correspond to a good or acceptable quality-
of-experience (QoE). That is, we implicitly assume a light
system load and very small deadline violation probabilities.

Next we discuss both approaches.

IV. PAIRED PATH PROTOCOL BASED ON CONDITIONING

Let us start with the conditioning approach yielding the
paired path protocol (PPP). The mean costs incurred in a busy
period, E[C], can be obtained by conditioning on the number
of jobs in the busy period N , e.g.,

E[C] = E[C |N = 1] P{N = 1}+ E[C |N > 1] P{N > 1}.

As discussed, the first term is often zero or is easy to determine
in general, and therefore, the simulation effort should focus on
estimating the second term. Given a Poisson arrival process
with rate λ, we can proceed as follows:
• Suppose that a busy period starts with a size x1 job, the

dispatching policy assigns the job to server j, and the
system incurs cost c1.

• Let s1 be the corresponding service time, s1 = x1/νj ,
where νj is the service rate of server j.

job 1
c1

N = 1

1− p1

job 2

c2

N = 2

1− p2

job 3

c3

N ≥ 3
p2

p1

Fig. 3. Paired path protocol (PPP) samples all branches in the above tree
simultaneously by conditioning on the next job arriving before the system
becomes idle.

• Then we have two possible cases:
1) With probability q1 = e−λs1 the next job arrives

later, and this busy period ends with a total cost of c1
(zero if deadline cost structure). We get a weighted
sample (q1, c1, 1) = (weight,costs,jobs).

2) With probability p1 = 1 − e−λs1 , the busy period
has more than one job. Instead of using an Exp(λ)
distribution, we generate a random arrival time for
the second job from a truncated Exp-distribution,

T1 ∼ Exp(λ, s1),

thus ensuring (conditioning) that the busy period has
at least one more job. Let c2 denote the costs it
incurs. The future jobs in this busy period, if any,
arrive according to a Poisson process with rate λ.
This yields a weighted sample (p1, c1 + c2 + . . .+
cn, n), where n denotes the number of jobs in the
busy period.

• The combined estimated sample data is then

(ĉ, n̂) = q1(c1, 1) + p1(c1 + c2 + . . .+ cn, n)

= (c1 + p1(c2 + . . .+ cn), 1 + p1(n− 1)).

This simulation gives samples (ĉi, n̂i), i = 1, . . . ,m, of the
costs and the number of jobs during busy periods.

In the above, the second case was conditioned on at least
one more job arriving in the busy period, N ≥ 2. Suppose
that with a given (reasonable) dispatching policy α the first
k − 1 jobs are routed to idle servers and hence never incur
costs, and therefore we would like to include sample paths
with k jobs or more, see Fig. 2. For example, with JSQ we
can set k = κ+ 1, where κ denotes the number of servers, as
the first κ jobs are guaranteed to receive service immediately
and no deadline violations are possible. Next we generalize
the procedure to take simultaneous samples of busy periods
with N = 1, 2, . . . , (k − 1) and N ≥ k jobs with arbitrary k.

The idea is illustrated in Fig. 3. For jobs j = 2, . . . , (k−1)
we recursively define their inter-arrival times, tj , and sj , the
remaining time before the system would be idle if no further
jobs arrive after the arrival of the jth job of the busy period, by
conditioning on N ≥ k. To this end, the inter-arrival time after
jobs 1, . . . , (k − 1) are drawn from the appropriate truncated

TABLE I
SUBROUTINES FOR THE SIMULATION ALGORITHMS.

Function Returns:
α(z,x): the server chosen when job x arrives in state z
backlog(z): the remaining time until the system becomes idle
cost(z,x, j): the immediate cost if job x is assigned to server j
add(z,x, j): the state after assigning job x to server j
process(z, t): the state after processing present jobs for time t

Exp-distributions, Exp(λ, sj), and we have the thinning factor
for each sample of a busy period with N ≥ k jobs,

p1 · · · pk−1 =

k−1∏
j=1

(1− e−λsj).

Similarly, the busy periods with n jobs, n < k, have weight

p1 · · · pn−1 · qn =

n−1∏
j=1

(1− e−λsj)

 · e−λsn .
The process of moving along the upper-most branch in

Fig. 3 we call priming the system state so that non-zero costs
can be observed more frequently. PPP resembles the well-
known splitting technique, where multiple sub-trajectories are
launched when the process enters an interesting region. The
main difference is that in our case the splitting is explicit and
each sample includes simultaneous trajectories of busy periods
with 1, 2, . . . , (k − 1) and at least k jobs.

A. Simulation algorithm

Let us next describe a complete algorithm that at each round
generates simultaneous samples of costs for cases where N is
1, 2, . . . , k − 1 and N ≥ k.

Let x denote a job. In the general case, in addition to the
size information, jobs may have such attributes as job- or
class-specific holding costs or deadlines, and this information
must be included in x. Then we let zj denote the state of
server j, defining jobs present and their remaining service
times, and let z = (z1, . . . , zκ) denote the state of the system.
The simulation algorithm utilizes the five subroutines listed in
Table I. We let the backlog(zj) be the current total scaled work
at server j, i.e., the time at which it would become idle if no
new arrivals were routed to it. We let backlog(z) be the time
at which all servers would become idle if there were no more
arrivals. We note that with FCFS and a single deadline τ for
all jobs, it is sufficient to let x denote the size of a job, and
the immediate deadline violation cost is

cost(z, x, j) = 1(backlog(zj) > τ).

When estimating E[N], we have cost(z, x, j) = 1, whereas
for the mean waiting time E[W], cost(z, x, j) = backlog(zj). In
practice, we collect all relevant statistics at the same time.

The actual simulation algorithm in pseudo code is given in
Table II. Note that the algorithm ensures that k jobs arrive
in the main branch, and that each sample consists of k sub-
samples (sample path trajectories). With k = 1 the procedure
reduces to the basic Monte Carlo simulation of a busy period.

TABLE II
PAIRED PATH PROTOCOL (PPP) ALGORITHM BASED ON CONDITIONING.

Initialize:
1) Initialize state z (empty system)
2) n̂b = ĉb = c = 0, w = 1

For n = 1, . . . , k − 1:
1) Draw a new job x (size and possible attributes)
2) With j = α(z,x):

• c = c+ cost(z,x, j)
• z = add(z,x, j)

3) s = backlog(z)
4) q = e−λs

5) n̂b = n̂b + wq · n
6) ĉb = ĉb + wq · c
7) w = w · (1− q)
8) Draw t ∼ Exp(λ, s) (time to next arrival)
9) z = process(z, t) (state upon arrival)

For n = k, k + 1, . . .:
1) Draw a new job x (size and possible attributes)
2) With j = α(z,x):

• c = c+ cost(z,x, j)
• z = add(z,x, j)

3) Draw t ∼ Exp(λ) (time to next arrival)
4) If t > backlog(z): (the busy period ends)

• n̂b = n̂b + w · n
• ĉb = ĉb + w · c
• Return (n̂b, ĉb)

5) z = process(z, t) (state upon arrival)

Proposition 1 The paired path protocol approach reduces the
variance in the deadline violation cost estimate when k ≥ 2.

Proof: Referring to Fig. 2, the probability that a sample
incurs costs, C > 0, increases, which, according to Lemma 1
reduces the variance. �

V. IMPORTANCE SAMPLING BY BIASED ARRIVAL RATE

In this section, we use a biased arrival rate to make (e.g.)
deadline violations to occur more frequently in our samples
of busy periods. We can use a biased arrival rate λ∗

1) during the service time s1 of the first job, ∆ = s1,
2) until the first deadline violation occurs (or the busy

period ends), or
3) for the whole busy period B∗, ∆ = B∗.

In all cases, the busy period B∗, with increased arrival rate for
some time ∆, is on average longer than the busy period with
the original arrival rate λ (assumed to be small). We note that
this is an application of the well-known importance sampling
(IS) method [4], [8], [9]. The idea is illustrated in Fig. 4 and
the appropriate weights to debias the samples can be derived
as follows:
• Let n be the number of jobs that arrive with the biased

arrival rate λ∗ during time ∆ (excluding the initial job
starting the busy period).

• The probabilities that there are n arrivals during time ∆
with arrival rates λ and λ∗ are

p =
(λ∆)n

n!
e−λ∆, and p∗ =

(λ∗∆)n

n!
e−λ

∗∆,

job 1
c1

N = 1

job 2

c2

N = 2

job 3

c3

N ≥ 3

Shift probability
mass!

Fig. 4. Importance sampling by biasing the arrival rate λ shifts the probability
mass towards the “upper branch” thus making the rare events more probable.

and hence the importance ratio (or likelihood ratio) is

β(n) =
p

p∗
=

(
λ

λ∗

)n
e(λ∗−λ)∆.

• Simulating samples of busy periods with a biased arrival
rate gives samples of (i) the number of jobs in a busy
period, N∗, and (ii) the total costs incurred, C∗. Both
quantities must be “debiased”, so that

E[N] = E[β(n)N∗],

E[C] = E[β(n)C∗].

That is, simulations of a busy period with biased arrival
rates give samples of form (β(n)N∗, β(n)C∗), where the
multiplication with the importance ratio β(n) ensures that the
estimates (for the mean) are unbiased. This holds with any
λ∗, but not all choices are good. The common criterion is to
minimize the variance of the estimate. Here, however, we have
two (or more) quantities that need to be estimated.

The estimate for the mean cost per job is the same as before,

η̂ =
C1 + . . .+ Cm
N1 + . . .+Nm

=
β(n1)C∗1 + . . .+ β(nm)C∗m
β(n1)N∗1 + . . .+ β(nm)N∗m

.

Note that biasing may become useful both when ρ→ 1 and
ρ→ 0, depending on the cost metric.

In case 1), where ∆ = s1, one can choose λ∗ so that λ∗∆ =
k for some constant k, defining the expected number of new
jobs during the service time of the first job. In some sense, this
is a probabilistic version of the paired path protocol discussed
earlier in Section IV. Then p∗ = kn/(n!ek) and

β(n) =

(
k

λ∆

)n
eλ∆−k.

Case 2), where ∆ is equal to the first deadline violation (or
some similar rare event), is similar to those considered in [8]
and [9]. The main distinction is that here the rare event takes
only a few jobs arriving sufficiently quickly, whereas in [8],
[9] the load is moderate and the rare event (buffer overflow)
is assumed to require a large number of jobs.

In case 3), where ∆ = B∗ and n = N∗ − 1, one should
store the 3-tuple, (λ∗, N∗, C∗), as that allows “extrapolation”
of the results to any other λ (as long as the corresponding ρ
is also stable!). For example, with a stable M/D/1 queue, the
probability of having a busy period with a single job is

P{X < A} = e−ρ > 1/e ≈ 0.368.

TABLE III
IS SIMULATION ALGORITHM BASED ON BIASING THE ARRIVAL RATE.

Initialize and the first job:
1) Initialize state z (empty system)
2) T = 0, N = 1
3) Draw a new job x (size and possible attributes)
4) With j = α(z,x):

• C = cost(z,x, j)
• z = add(z,x, j)

5) ∆ = backlog(z)
6) Draw t ∼ Exp(λ∗) (time to next arrival)

While t < ∆− T :
1) z = process(z, t)
2) T = T + t
3) N = N + 1
4) Draw a new job x (size and possible attributes)
5) With j = α(z,x):

• C = C + cost(z,x, j)
• z = add(z,x, j)

6) Draw t ∼ Exp(λ∗) (time to next arrival)
Remaining time with the biased λ∗:

1) z = process(z,∆− T) (no arrivals until time T = ∆)
2) β = (λ/λ∗)N−1e−(λ−λ∗)∆ (as n = N − 1)
3) Draw t ∼ Exp(λ) (next arrival at T + t)

While t < backlog(z):
1) z = process(z, t) (T = T + t)
2) N = N + 1
3) Draw a new job x (size and possible attributes)
4) With j = α(z,x):

• C = C + cost(z,x, j)
• z = add(z,x, j)

5) Draw t ∼ Exp(λ) (time to next arrival)
Unbias:

1) Return (βN, βC)

Thus, informally, it seems to be relatively safe to extrapolate
towards lower arrival rates as sample sets, even with ρ∗ ≈ 1,
have a large fraction of samples of busy periods with one or
a few jobs. The opposite, however, can be more challenging
when ρ ≈ 1, because typical busy periods are very long, and
such long busy periods basically never exist for ρ∗ moderate
or small. Therefore even a large but finite sample set of (sim-
ulated) busy periods may not be sufficiently representative.

The simulation algorithm in pseudo code with a biased
arrival rate for Case 1) is given in Table III. Note that we
stop updating the accumulated time T when that information
is no longer needed. The pseudo code for Cases 2) and 3) is
very similar and omitted for brevity.

A. Splitting

The splitting technique [1], [2], [3] could also be applied
in our setting. This is illustrated in Fig. 5, where multiple
trajectories are launched when the second job arrives. In
splitting, one does not change the dynamics of the stochastic
system, but simply replicates the process when it approaches
a region of interest. In our setting, with a small λ, most busy
periods consist of a single job, incur no costs, and there is no
chance to split to begin with! For this reason, PPP and IS are
more attractive techniques for us. However, when the offered
load increases splitting also becomes a viable option.

job 1
c1

N = 1

job 2

c2

N = 2

job 3

c3

N ≥ 3
Split if the second
job arrives in time!

Fig. 5. Splitting launches multiple trajectories when approaching the interest-
ing region thus increasing the chances that a trajectory could eventually incur
a positive cost. However, when λ is very small, most trajectories immediately
continue “downwards”.

VI. NUMERICAL EXAMPLES

In this section, we utilize the rare event simulation tech-
niques developed in the previous sections. We consider κ =
2, 3, 4 identical exponential servers and the deadline cost
structure. First we study the variance reduction (Section VI-B),
and then illustrate the performance of different policies near
the light traffic limit as ρ→ 0 (Section VI-C).

A. Dispatching policies

Let us start by introducing our example dispatching policies.
The random (Bernoulli) split is the easiest policy to analyze:
• Random split (RND) assigns each job uniformly at

random to κ servers, thus balancing the load.
With exponential service times, the system decomposes into
independent M/M/1 queues, and we have an explicit result for
the waiting time distribution,

η = P{W > τ} = ρe−(µ−λ)τ ,

where (λ, µ) are the queue-specific quantities. When ρ is
small, λ� µ, we have a linear relationship,

η ≈ ρe−µτ = ρe−δ, (4)

where δ = µτ so that the system’s performance is charac-
terized by two dimensionless quantities, (ρ, δ). Similarly it
is easy to obtain results for heterogeneous κ-server systems
with an exponential job size and load balancing random split
dispatching policy.

We consider also four other dispatching policies:
• Round-robin (RR) assigns jobs sequentially in a fixed

order, 1, 2, . . . , κ, 1, 2, In some sense, RR is clearly
stateful. However, with Poisson arrivals, the system de-
composes to κ identical Erl(κ, λ)/G/1 queues as the
interval-arrival times are now Erlang-distributed. Effec-
tively, RR regulates the arrival process, which tends to
improve the system’s performance.

• Join-the-shortest-queue (JSQ) chooses the queue with
the least number of jobs, so the state is the number of jobs
at each server (number-aware). Ties can be resolved in
favor of the server with a smaller index. Equivalently, ties
could be resolved, e.g., randomly (cf. lack of memory).

• Least-work-left (LWL) chooses the queue with the
shortest backlog, so the state is the backlog, or normalized

10
0

10
1

10
2

10
3

 0.001 0.01 0.1

Standard (k=1)

Splitting (d=10)
IS with biased λ

*

PPP with k=3c
v
 o

f
th

e
 c

o
s
ts

 C

Offered load ρ

Two servers with JSQ and deadline at τ=1

Fig. 6. Coefficient of variation of the random quantity C (the number of
deadline violations in a busy period) with different simulation approaches.

work, which requires size information for jobs (size-
aware). Again, ties are resolved in favor of the server
with the smaller index.

• Hybrid-work-left (HWL) chooses the queue with the
shortest backlog, if that avoids a deadline violation.
Otherwise the queue with the longest backlog is chosen.
The motivation is that this increases the chances for the
next job to receive service in time.

Both JSQ and LWL are greedy or selfish policies where
the (expected) waiting time of the new job is minimized.
Therefore, they can be expected to work rather well also with
the deadline cost structure. HWL is marginally less myopic
than LWL, and is expected to work well under low load. It
is very similar to the Dead-k policy, introduced in [6], which
routes a job bound to miss its deadline to a fixed subset of
servers, thus also improving the chances that the next job will
receive service in time. However, when the load is high, HWL,
like Dead-k, is prone to stability problems. For details on the
general merits and weaknesses of RR, JSQ and LWL, see, e.g.,
[10] and the references therein. For more advanced policies,
tailored specifically for deadline cost structures, see, e.g., [6],
[11], [12].

B. Variance Reduction

Let us first study the variance reduction with different
approaches. To this end, consider the random variable C
corresponding to the costs incurred in a busy period. Moreover,
we fix the dispatching policy to JSQ and assume two servers,
κ = 2, exponential service times, E[X] = 1/µ = 1, and a
target deadline of τ = 1, so that δ = µτ = 1.

With splitting, we launch d = 10 trajectories if the second
job arrives before the service of the first job finishes. The
size of the second job, X2, is drawn independently for each
trajectory. With IS, we set λ∗ so that on average two more
jobs arrive during the service time of the first job, λ∗ = 2/s1.
With PPP, we use k = 3 so that each sample includes simul-
taneously samples of busy periods with N = 1, N = 2 and
N ≥ 3 jobs, and the corresponding cost C is an appropriately
weighted sum of the three scenarios.

Fig. 6 depicts the coefficient of variation, cv = σC/E[C],
with (i) standard Monte Carlo simulation, (ii) splitting, (iii) IS

and (iv) PPP. We see that both PPP and IS reduce the variance
efficiently, and in particular, the coefficient of variation, cv ,
tends to a constant value as ρ → 0. In contrast, with
standard Monte Carlo simulation and splitting, cv diverges
(as expected). We note that, at the cost of computation time,
the splitting parameter d could be increased as ρ decreases.
This, however, would lead to an unfair comparison because
increasing d is equivalent to performing multiple simulations.
(In fact, aggregating 10 samples of the standard Monte Carlo
simulation yields basically the same results as with splitting!)
Results are similar for the other policies and are omitted for
brevity.

C. Deadline violations when ρ→ 0

Given that the PPP works well, and the variance is clearly
under control for all ρ > 0, we will utilize it next to study the
performance of the different dispatching policies when ρ →
0. The behavior of many queueing systems in the limit as
ρ → 0, known as the light traffic limit, can be determined
analytically [13], and thus it serves as a good reference point
for our simulation techniques (which are usable also when ρ
is small but strictly positive, as in the assumed mission critical
systems).

Consider first the same two-server system. With RND, (4)
reduces to η = ρ/e. The dynamic policies, RR, JSQ, LWL
and HWL, can be evaluated using simulation. The numerical
results are depicted in Fig. 7 (left) in log-log scale with
solid lines. On the x-axis is the offered load ρ, and the y-
axis corresponds to the deadline violation probability. The
numerical results are based on 109 simulated busy periods
with k = 3 so that at least 3 jobs arrive in every sample busy
period.

Next we fit functions of the form Aρr using the method
of least squares to match the smallest three data points. By
considering the slopes, we observe that the performance with
RND behaves linearly near the origin, r ≈ 1, in agreement
with (4), whereas the dynamic dispatching policies converge
quadratically, r ≈ 2. When ρ is very small, the performance
with LWL and HWL is identical. At ρ = 0.1, HWL is
marginally better than LWL. Approximately, the numerical
results give us

ηRR ≈
3

2
ρ2, ηJSQ ≈

3

4
ρ2, ηLWL ≈

3

4e
ρ2, (5)

suggesting that ηRR/ηJSQ → 2 and ηLWL/ηJSQ → 1/e as ρ →
0. In Fig. 8 (left), we have depicted the relative performance of
policy α to JSQ, ηα/ηJSQ, as a function of ρ. The solid lines
correspond to τ = 1 and the dashed lines to τ = 1/2 and
τ = 2. With RR, all three curves overlap, suggesting that the
ratio is insensitive to τ , whereas with LWL a higher τ yields a
greater difference relative to JSQ. In particular, the numerical
results suggest a more general relationship as ρ→ 0:

ηRR

ηJSQ
→ 2 and

ηJSQ

ηLWL
→ eδ.

Figs. 7 (middle) and (right) depict the simulation results
with κ = 3, 4 servers. With κ = 3, we simulated 109

busy periods with k = 4, and the results with κ = 4 are
based on 109 busy periods with k = 6, . . . , 8. As before, the
performance with LWL is the same as with HWL in the limit
as ρ→ 0. Around ρ = 0.1, HWL is marginally better.

Applying again the least squares method, we observe that
the exponent r for ρ with the dynamic policies is equal to
the number of the servers, η ∝ ρκ, as expected, in contrast to
RND, where the relationship is always linear, η ∝ ρ.

Figs. 8 (middle) and (right) show the relative deadline
performance ratio to JSQ for κ = 3, 4 servers. The solid curves
correspond to τ = 1, and dashed curves to τ = 1/2 and τ = 2.
Comparing first RR to JSQ, we observe an interesting general
limiting relationship,

lim
ρ→0

ηRR

ηJSQ
= κ!,

which indeed seems to be insensitive to the deadline τ as the
green solid and dashed curves corresponding to RR overlap.
In contrast, the relative performance with LWL and with HWL
improves as a function of τ (or δ). This means that size
information becomes more valuable as the deadline threshold
τ increases. Combining the numerical results with κ = 2, 3, 4
servers with τ = 0.5, 1, 2, it seems that in general we have:

Observation 1 With κ identical exponential servers, it holds
for the deadline violation probabilities that

lim
ρ→0

ηRR

ηJSQ
= κ!

lim
ρ→0

ηLWL

ηJSQ
= e−δ(κ−1)

where δ = τµ and ηα = P{W > τ |α} is the deadline
violation probability with dispatching policy α.

D. Mean waiting time when ρ→ 0

Next we look at how the mean waiting time, E[W], behaves
as ρ → 0. As with the deadline metric, the majority of the
samples incur no costs, W = 0, and therefore the advanced
simulation techniques are required. The numerical results are
depicted in Figure 9. Note that only the HWL policy depends
on the deadline parameter τ = 1/2, 1, 2, which is a superfluous
parameter for this metric. With the other three policies, RR,
JSQ and LWL, the mean waiting time is independent of the
value of τ .

Observation 2 With κ identical exponential servers, we have

lim
ρ→0

E[W |RR]

E[W | JSQ]
= κ!

lim
ρ→0

E[W |LWL]

E[W | JSQ]
=

1

κ

where E[W |α] denotes the mean response time with dispatch-
ing policy α.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0.001 0.01 0.1

RND

RR

JSQ
LWL/HWL

D
e

a
d

lin
e

 v
io

la
ti
o

n
 p

ro
b

a
b

ili
ty

Offered load ρ

Two servers

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0.001 0.01 0.1

RND

RR

JSQ

LWL/HWL

D
e

a
d

lin
e

 v
io

la
ti
o

n
 p

ro
b

a
b

ili
ty

Offered load ρ

Three servers

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0.001 0.01 0.1

RND

RR

JSQ

LWL/H
WL

D
e

a
d

lin
e

 v
io

la
ti
o

n
 p

ro
b

a
b

ili
ty

Offered load ρ

Four servers

Fig. 7. Deadline violation probability under low load with κ = 2, 3, 4 servers, τ = 1.

10
-1

10
0

10
1

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

LWL, τ=1/2

LWL, τ=1

LWL, τ=2

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Offered load ρ

Two servers

10
-2

10
-1

10
0

10
1

10
2

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

LWL, τ=1/2

LWL, τ=1

LWL, τ=2

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Offered load ρ

Three servers

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

LWL, τ=1/2

LWL, τ=1

LWL, τ=2

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

Offered load ρ

Four servers

Fig. 8. Relative performance with respect to deadline violations with κ = 2, 3, 4 servers. Solid lines correspond to τ = 1 and dashed-dotted lines to τ = 0.5
and dashed lines τ = 2. Cases τ = 0.5 and τ = 2 are clearly visible only for LWL/HWL.

 0.5

 0.75

 1

 1.5

 2

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

HWL (τ=1/2)

HWL (τ=1)

LWL and HWL (τ=2)

y=2!

y=1/2

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

Offered load ρ

Two servers

1/3

 1

 6

 10

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

HWL (τ=1/2)

HWL (τ=1)

LWL and HWL (τ=2)

y=3!

y=1/3

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

Offered load ρ

Three servers

10
-1

1/4

 1

 10

 24

 0.001 0.01 0.1

RR (any τ)

JSQ (reference)

HWL (τ=1/2)

HWL (τ=1)

LWL and HWL (τ=2)

y=4!

y=1/4

R
e

la
ti
v
e

 w
a

it
in

g
 t

im
e

Offered load ρ

Four servers

Fig. 9. Relative performance with respect to mean waiting time with κ = 2, 3, 4 servers. Solid lines correspond to τ = 1 and dashed-dotted lines to τ = 0.5
and dashed lines τ = 2 with HWL. The other policies are insensitive to τ .

E. Intuition for the observed behavior when ρ→ 0

The results on the relative performance in the limit as ρ→
0 can be argued by considering the most likely sequence of
events leading to a positive cost. As ρ is very small, one ends
up considering arrival sequences of κ+ 1 jobs [13].

Let us consider first RR. The probability that the (κ+ 1)st

job is routed to a busy server with RR is

pRR = P{the next job arrives before job 1 departs}κ

=

(
λ

λ+ µ

)κ
.

With JSQ, the (κ + 1)st job has to wait only if all κ servers

are busy, i.e.,

pJSQ = P{no job departs before the (κ+ 1)st job arrives}

=
λ

λ+ µ
· λ

λ+ 2µ
· · · λ

λ+ κµ
=

λκ∏κ
i=1(λ+ iµ)

.

Due to lack of memory, the conditional waiting time distri-
bution of the (κ + 1)st job with RR and JSQ is exponential,
Wκ+1 ∼ Exp(µ). Hence, in the limit as λ → 0, RR is κ!
times worse than JSQ with respect to any waiting time related
performance metric such as the deadline violation probability
and mean waiting time. This explains the RR related results
in Observations 1 and 2.

With LWL, the probability that the (κ+1)st job has to wait is
the same as with JSQ, pLWL = pJSQ. However, the conditional
waiting time distribution is the minimum of κ exponentially
distributed random variables, i.e., Wκ+1 ∼ Exp(κµ) for LWL.

Thus, the waiting time of the (κ + 1)st job of a busy period
is “served” at the rate κµ with LWL, whereas with JSQ the
corresponding service rate is only µ. Therefore, in the limit as
λ→ 0, with respect to deadline violation probability we have

lim
ρ→0

ηLWL

ηJSQ
=
e−κµτ

e−µτ
= e−δ(κ−1),

and with respect to the mean waiting time,

lim
ρ→0

E[Wκ+1 |LWL]

E[Wκ+1 | JSQ]
=

1/(κµ)

1/µ
=

1

κ
,

which explain the related results in Observations 1 and 2. As

pα · P{Wκ+1 > τ |Wκ+1 > 0} → ηα,

we also have the exact light traffic results for the deadline
metric (when ρ→ 0),

ηRR = κκe−δρκ,

ηJSQ =
κκe−δ

κ!
ρκ,

ηLWL =
κκe−κδ

κ!
ρκ,

which match well with the earlier numerical estimates (5)
obtained for κ = 2.

Referring to Figures 8 and 9, in our example scenarios,
with different numbers of servers, dispatching policies and
performance metrics, the light traffic estimates are accurate
only when the load is very low, ρ < 0.01. When ρ > 0.01,
but still low, the performance evaluation must be carried out
by means of our novel Monte Carlo simulation techniques.

VII. CONCLUSIONS

The performance of a dispatching system depends on the
offered load, the number of servers (and their capacity and
internal scheduling discipline), the dispatching policy and the
cost metric. We focused on a deadline cost metric, where each
job has a certain maximum waiting time it can tolerate. In
mission critical dispatching systems, the dimensioning criteria
should be such that most of the time the system works
flawlessly, i.e., deadline violations are extremely rare. In such
cases, it may be difficult to evaluate the (relative) performance
of different dispatching policies. The main contribution of
this paper is the development of two advanced simulation
techniques designed for situations when the offered load is
low and events generating costs are rare. In the first ap-
proach, referred to as the paired path protocol (PPP), we take
samples of busy periods with at least k jobs, where k is a
free parameter. In the second approach, based on importance
sampling (IS), we utilize a biased arrival rate to the same
end, i.e., in both cases the goal is to obtain samples with
a strictly positive cost more frequently. We emphasize that
the proposed simulation techniques are general in the sense
that the dispatching policy, the cost structure, and the service
time distribution can be arbitrary and servers heterogeneous.
Moreover, they are practical whenever ρ is small, not just in
the limit as ρ → 0. In fact, the behavior of many queueing

systems and performance metrics in this light traffic limit can
be deduced analytically [13].

We also demonstrated our approaches by comparing five
dispatching policies (RND, RR, JSQ, LWL and HWL) for the
basic routing problem with exponential service times, κ =
2, 3, 4 identical servers, and deadline cost structure. First, the
deadline violation probability with the four dynamic policies
converges to zero at a rate proportional to ρκ, whereas with
RND the rate is proportional to ρ. At this limit, RR is κ!
times worse than JSQ, which in turn is eδ(κ−1) times worse
than LWL/HWL, where δ = µτ is a dimensionless quantity
characterizing the deadline in terms of the mean service time.
The extensive simulation experiments suggest that the light-
traffic limit results are accurate when the offered load is very
small, ρ < 0.01 in our case. Above that, novel Monte Carlo
simulations are needed.

ACKNOWLEDGEMENTS

This work was supported by the Academy of Finland in
the FQ4BD project (grant no. 296206) and by the University
of Iceland Research Fund in the RL-STAR project. It is also
based upon work from COST Action CA15127 RECODIS
supported by COST (European Cooperation in Science and
Technology).

REFERENCES

[1] M. Villén-Altamirano and J. Villén-Altamirano, “RESTART: A method
for accelerating rare event simulation,” in Queueing Performance and
Control in ATM, J.W.Cohen and C. D. Pack, Eds., Copenhagen, Den-
mark, Jun. 1991, pp. 71–76, ITC-13 Workshops.

[2] Z. Haraszti and J. K. Townsend, “The theory of direct probability redis-
tribution and its application to rare event simulation,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 9, no. 2, pp.
105–140, 1999.

[3] G. Rubino and B. Tuffin, Rare Event Simulation Using Monte Carlo
Methods. Wiley Publishing, 2009.

[4] S. M. Ross, Introduction to Probability Models, 7th ed. Academic
Press, 2000.

[5] J. Kuhn and M. Mandjes, “Efficient simulation of tail probabilities in a
queueing model with heterogeneous servers,” Stochastic Models, vol. 34,
no. 2, pp. 239–267, 2018.

[6] E. Hyytiä and R. Righter, “Routing jobs with deadlines to heterogeneous
parallel servers,” Operations Research Letters, vol. 44, no. 4, pp. 507–
513, 2016.

[7] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of Queueing Theory, 4th ed. John Wiley & Sons, 2008.

[8] S. Parekh and J. Walrand, “A quick simulation method for excessive
backlogs in networks of queues,” IEEE Transactions on Automatic
Control, vol. 34, no. 1, pp. 54–66, Jan. 1989.

[9] J. S. Sadowsky, “Large deviations theory and efficient simulation of ex-
cessive backlogs in a GI/GI/m queue,” IEEE Transactions on Automatic
Control, vol. 36, no. 12, pp. 1383–1394, Dec. 1991.

[10] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[11] E. Hyytiä, R. Righter, and J. Virtamo, “Meeting soft deadlines in single-
and multi-server systems,” in 28th International Teletraffic Congress
(ITC’28), Würzburg, Germany, Sep. 2016.

[12] E. Hyytiä, R. Righter, O. Bilenne, and X. Wu, “Dispatching fixed-
sized jobs with multiple deadlines to parallel heterogeneous servers,”
Performance Evaluation, vol. 114, pp. 32–44, Sep. 2017.

[13] M. I. Reiman and B. Simon, “Open queueing systems in light traffic,”
Mathematics of Operations Research, vol. 14, no. 1, pp. 26–59, 1989.

