
Value (generating) functions for the MX/G/1 queue
Esa Hyytiä

Department of CS
University of Iceland

Rhonda Righter
IEOR

UC Berkeley

Jorma Virtamo
COMNET

Aalto University

Lauri Viitasaari
COMNET

Aalto University

Abstract—We analyze the MX /G/1 queue in the framework
of Markov decision processes (MDPs). The service times become
known upon arrival, and each job incurs a cost according to a
given cost function. The value function is a central concept in
MDP theory as it characterizes the value of the system’s state with
respect to future developments. We derive compact expressions
for the generating functions for general families of value functions
corresponding to often used cost structures defined in terms of
waiting and sojourn times. Moreover, we consider systems with
and without setup delays.

Index Terms—MX /G/1; batch arrivals; generating function;
value function; MDP; LST transform

I. INTRODUCTION

Many practical and important problems can be formulated
as Markov decision problems (MDPs), where optimal or near-
optimal control of a system subject to stochastic phenomena is
sought. Such control problems can be found in a wide-variety
of fields, e.g., inventory management, stock portfolio manage-
ment, computer networks, data centers, and transportation.

In this paper, we are interested in single and parallel server
systems. In order to optimize such a system, one needs to first
define a meaningful objective. A relatively common choice is
to minimize the mean response time, i.e., the mean time spent
in the system. According to Little’s result, this is equivalent to
minimizing the mean number of jobs in the system. In a more
general context, one can introduce job-specific holding costs to
differentiate between more important and less important jobs.
Similarly, from the fairness perspective it might be useful to
consider (also) higher moments of the waiting or response
time. All these cost structures may be unbounded if a job
spends a long enough time in the system. These cost structures
can be specified by (typically) non-negative and increasing
cost functions c(w) or c(t) that define the cost incurred when
a job has to wait time w before it starts service, or when job’s
sojourn time is t, respectively. Some common cost structures
for c(w) are shown in Table I.

Our model for a single server system is the MX /G/1 queue,
where batches of jobs arrive to the server according to a
Poisson process, they are served in first-come-first-served
(FCFS) order, and the service times are independent and
identically distributed (i.i.d.) random variables. Optionally, we
also assume that an idle server can be switched to a low power
state, from which it is woken up when the next batch of jobs
arrives. The wake up time is non-negligible and referred to as
the setup delay, which induces an additional delay to jobs.

We also consider a multi-server setting with n heteroge-
neous parallel servers, where each job is dispatched immedi-

Two jobs

λ

One bigger job

Dispatcher

Parallel servers

µ1

µ2

µ3

Fig. 1. Model for a parallel server system with batch arrivals.

ately upon arrival to one of the servers (see Figure 1). In this
case, the space of control actions includes both server switch-
off and job routing decisions.

We study the optimal control policies in the MDP frame-
work by using the so-called value functions that characterize
the expected future costs for each state. Often one assumes
Poisson arrival process, exponential service times, and that the
system state is defined by the number of jobs (per server). We
refer to such models as number-aware systems. E.g., Krishnan
[1] minimizes the mean sojourn time, and Argon et al. [2]
general costs defined as a function of sojourn time for such a
parallel server system (without setup delay).

In contrast, in size-aware systems exact service times be-
come available upon arrival. Size-aware parallel server systems
with a general service time distribution and a setup delay have
been considered in [7]. The cost structures are general and
include both the energy consumption and polynomial QoS
metrics defined as a function of waiting or sojourn time. In
contrast to above, our arrival process is more general, Poisson
batch process, and also the cost structures are more general.
Note that the number-aware case can be obtained from the
size-aware results by deconditioning.

The main contribution of this paper is twofold: First, we
give compact expressions for the value function of the MX /G/1
queue subject to random setup delays and arbitrary cost
functions defined in terms of the job-specific waiting and
sojourn times. Second, we study “exponential” cost structures
that yield or generate all cost structures listed in Table I as spe-
cial cases. These value functions have particularly convenient
forms from which one can identify the well-known Pollaczek-
Khinchin transform formulæ and the penalty due to the setup
delay.

The rest of the paper is organized as follows. First, in
Section II we introduce the basic model, the MX /G/1 queue.
In Section III, we analyze the model when costs are defined
in terms of the waiting time. In Section IV, we consider an
exponential cost function of waiting time. Costs based on the



sojourn time are then discussed in Section V. In Section VI, we
utilize the obtained results and derive policies for switching
off servers and routing jobs to parallel servers. Section VII
concludes the paper.

II. MODEL

The basic queueing model we consider is the MX /G/1 queue
defined as follows.

Definition 1 (MX /G/1) The MX /G/1 queue is a single server
queue where jobs arrive in batches, each batch consisting of
a random number of jobs, Bi ∼ B (i.i.d.), where B is referred
to as the batch size. The batch arrival process is a Poisson
process at rate λb. The service times of jobs are i.i.d., Xi ∼ X ,
and thus the service time of the batch is a random sum,

H = X1 + . . .+XB .

The offered load, denoted by ρ is

ρ , λb E[H] = λE[X], (1)

where λ denotes the job arrival rate, λ = λb E[B]. In general,
we assume that ρ < 1 so that the system is stable and ergodic.

The main advantage of studying the MX /G/1 queue instead
of the M/G/1 queue (with B = 1) is that by adjusting the batch
size distribution we can model more bursty arrival processes
without giving up the memoryless property of Poisson process.

We also consider systems where the server is switched off
when idle. The motivation for this is the presumed energy
savings. However, the drawback is that restarting the server
takes some time, referred to as the setup delay. We assume
that setup delays, Di ∼ D, are i.i.d., and that the server is
switched back on as soon as the first batch of jobs arrives.

III. VALUE GENERATING FUNCTION FOR WAITING TIME

In this section, we consider the MX /G/1 queue with a
general cost structure that is some function of the waiting
time. The main result is Proposition 1, which characterizes
the corresponding value function, defined later, in a compact
and useful expression.

Definition 2 (Cost structure c(w)) Each job incurs a cost
immediately upon arrival defined by a cost function c(w),
where w denotes job’s waiting time.

Typically, c(w) is non-negative and increasing, even though
the results also hold more generally. Some examples are given
in Table I.

Remark 1 Several generalizations are possible with very
little effort. First, the cost function can be a job- or batch-
specific random function (i.i.d.), allowing, e.g., job classes with
different weights, and taking into account the job’s service time
(cf. slowdown, see Table I). Second, the cost function can also
depend on the position of the job in the batch. Third, the cost
structures can be server-specific.

TABLE I
COMMON COST STRUCTURES.

Type Cost function References
waiting time c1(w)= w [3], [4], [5], [6]
higher moments cn(w)= wn, n = 1, 2, . . . [7]
slowdown cs(w, x)= w/x (per job) [8], [9]
deadline(s) cτ (w)= 1(w > τ) [2], [10], [11]
energy ce(w)= 1(w > 0) [12], [7]
w is the waiting time in a (FCFS) queue, x the service time of a job,
and τ the deadline.

The systems we consider in this paper are size-aware, which
means that service times become known upon arrival and,
consequently, the state of the queue, under FCFS, can be
described by the backlog (unfinished work) u. We let U denote
the backlog in steady state. The MX /G/1 queue has batch
arrivals, and the backlog is updated instantly as each job of the
batch gets added to the queue one at a time. The backlog U
corresponds to the waiting time the batch sees, due to PASTA.
Additionally, individual jobs have to wait until the jobs ahead
of them within the same batch have been processed.

We let r denote the mean cost rate (per unit time) and c̄ =
E[c(W )] the mean cost incurred per arriving job,

r , λE[c(W )] = λ c̄. (2)

We carry out our analysis in the context of Markov decision
processes. The central concept is the value function.

Definition 3 (Value function) The value function is the ex-
pected cost difference in the infinite time-horizon between a
system initially in state u and a system in equilibrium,

v(u) , lim
t→∞

E[V (u, t)− rt], (3)

where the random variable V (u, t) denotes the costs incurred
during time (0, t) when the system is initially in state u.

Given ρ < 1, the MX /G/1 queue is stable, and the system
is ergodic. We further assume that the above limit exists and
is finite.

In general, the constant term in v(u) is irrelevant as the
important quantity for making decisions is the difference v(u+
x) − v(u). Consequently, most of our results are given for
v(u)− v(0). Hence, v(u) characterizes the expected deviation
(in terms of costs) from the mean cost (rate), whereas v(u)−
v(0) characterizes the expected deviation from the system that
is initially empty.

Proposition 1 The value function v(u) for the MX /G/1 queue
with i.i.d. setup delays D and admission costs defined by an
arbitrary function c(w) satisfies

v(u)− v(0) =
λu

1− ρ
E[c(W0 + Y )− c(W )], (4)

where W and W0 denote the waiting time of a job with
and without the setup delay, and Y = Y (u) ∼ U(0, u) and
independent of W0.



Arrivals

Y1
Y2

mini busy
period #1

mini busy
period #2

Arrivals

T1 T2

Y1
Y2

u

M/G/1 busy periods

Fig. 2. A sample realization with two mini busy periods until the server becomes idle (left). Mini busy periods interrupting the service of the initial backlog
of u originate from the Poisson process with rate λb (right).

To keep the proof of Proposition 1 short, we first prove
the following Lemma regarding the total cost S accumulated
during a busy period when the cost of an individual job is
c(W ), where W is the waiting time of the job.

Lemma 1 Consider an MX /G/1 queue with i.i.d. setup delays
Di ∼ D. Jobs incur costs according to c(W ), where W
denotes job’s waiting time and c(w) is an arbitrary function
R+ → R. Let random variable S denote the cost incurred
during a busy period. Then

E[S] =
(1 + λb E[D])E[B]

1− ρ
E[c(W )]. (5)

Proof: Recall that batches arrive at rate λb and jobs at rate
λ = λb E[B]. The mean cost rate is by definition

r = λE[c(W )] = λb E[B] E[c(W )]. (6)

Consider a renewal process where the renewal point is the
time instant when the system becomes idle. The mean renewal
interval is the sum of the mean idle period and the mean busy
period,

Tr =
1

λb
+

E[H +D]

1− ρ
=

1 + λb E[D]

λb(1− ρ)
.

where H is the service time of a batch. Hence, an alternative
expression for the mean cost rate is

r =
E[S]

Tr
=

λb(1− ρ)

1 + λb E[D]
· E[S]. (7)

Combining (6) and (7) yields (5). �
The following corollary allows us to include an offset in the

cost function as needed in our proof of Proposition 1.

Corollary 1 When jobs incur costs according to c(W + y),
where y is a given constant, then noting that c̃(w) , c(w+y)
is just another cost function, it follows that the mean cost
incurred during a busy period is

E[S(y)] =
(1 + λb E[D])E[B]

1− ρ
E[c(W + y)],

and if the server has no setup delay (D = 0), then the mean
cost incurred during a busy period is

E[S0(y)] =
E[B]

1− ρ
E[c(W0 + y)], (8)

where W0 denotes job’s waiting time in the MX /G/1 queue
without a setup delay.

With these, we are ready to prove Proposition 1:
Proof: [Proposition 1] Let Tu denote the remaining time of
the busy period when currently in state u. By definition,

v(u) = E[V (u)]− E[Tu] r + v(0),

where E[V (u)] denotes the mean cost incurred during the
remaining busy period, r = λE[c(W )] is the mean cost rate
(with the setup delay), and E[Tu] = u/(1− ρ). Hence,

E[Tu] r =
λu

1− ρ
E[c(W )], (9)

where W corresponds to the waiting time in the actual system
subject to a possible setup delay D.

Consider next the first term E[V (u)]. When a batch of jobs
arrives before the system is empty, a new mini busy period is
started that will end when the backlog returns to the same level
as it was before (see Figure 2 (left)). As the server was already
processing jobs, the mini busy periods do not involve any setup
delays. Let Nb denote the number of mini busy periods, and
Yi the original unfinished work u in system when the ith mini
busy period starts. With these,

E[V (u)] = E[

Nb∑
i=1

S0(Yi)]. (10)

Referring to Figure 2 (right), we see that Yi = u − Ti,
where the Ti represent the instants where the service of the
original unfinished work u is interrupted in a system where
the durations of these interruptions are squeezed to zero. The
intervals between successive instants Ti are exponentially (and
independently) distributed (taking 0 = T0) and consequently
constitute a Poisson process with intensity λb. Given the
number Nb of arrivals from this Poisson process in the interval
(0, u), the set of arrival instants may be obtained drawing
instants T̃i, i = 1, . . . , Nb, independently of the others, from
the uniform distribution U(0, u). Consequently, the set of
values Ỹi is obtained drawing each of them independently from
the distribution U(0, u). We denote by Y a generic variable
of this kind, Y (u) ∼ U(0, u). The actual values Yi represent
an ordered set of the Ỹi. Ordering does not affect the sum in



(10), and noting that E[Nb] = λbu and using the result (8),
we can write (10) in the form

E[V (u)] = E[

Nb∑
i=1

S0(Y )]

= E[E[

Nb∑
i=1

S0(Yi) |Nb]]

= E[Nb] · E[S0(Y )] = E[Nb] · E[E[S0(Y )] |Y ]

= λbu ·
E[B]

1− ρ
E[c(W0 + Y )] =

λu

1− ρ
E[c(W0 + Y )],

where W0 denotes the waiting time in the system with no
setup delay (mini busy periods do not involve setup delay).
Combining the above with (9) completes the proof. �

The above yields immediately a corollary (see [7]):

Corollary 2 Setup delay D gives rise to an additive term in
the value function,

v(u)− v(0) =

v∗(u)− v∗(0) +
λu

1− ρ
E[c(W0)− c(W )],

(11)

where v(u) and v∗(u) denote the value functions with and
without the setup delay of D, and W and W0 denote the
waiting time with and without the setup delay.

As Y ∼ U(0, u) in (4), we can write explicitly that

v(u)− v(0) =
λ

1− ρ

∫ u

0

E[c(W0 + y)− c(W )] dy. (12)

Thus,

v′(u) =
λ

1− ρ
E[c(W0 + u)− c(W )]. (13)

In general, if a random variable Z and Y ∼ U(0, u) are
independent, then for any differentiable1 (cost) function c(·)
with integrable derivative the following holds identically:

uE[c′(Z + Y )] = E[c(Z + u)]− E[c(Z)].

Without setup delay, W ∼W0, and (13) thus reduces to

v′(u) =
λu

1− ρ
E[c′(W0 + Y )]. (14)

Note that (13) and (14) are first order ordinary differential
equations and, provided that the expectations on the right hand
side can be evaluated, they can easily be integrated to yield a
unique solution for the difference v(u)− v(0).

Example 1 (QoE with M/M/1) Suppose that when a cus-
tomer’s waiting time exceeds some threshold her perception
of the quality quickly deteriorates to an unsatisfactory level.
This can be modeled with a logistic cost function, say

c(w) =
1

1 + e−4(w−2)
,

1The cost function c(w) can also be non-differentiable at countably many
points. Consider, e.g., the deadline cost cτ (w) given in TableI.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Waiting time w

C
o
s
t
c
(w

)

0 1 2 3 4

0

1

2

3

4

Backlog u

v
(u
)-

v
(0
)

Fig. 3. Example value function for a logistic cost function (cf. QoE).

illustrated in Figure 3 (left). Consider then the classical M/M/1
queue with λ = 1, µ = 2, for which P{W > t} = ρ e−(µ−λ)t,
and (14) yields v′(u), the integral of which then gives the
value function depicted in Figure 3 (right). Note the asymptotic
linear behavior (cf. [10], [11]).

IV. EXPONENTIAL COST FUNCTION

Let us next consider a cost function cW (w, s) defined as

cW (w, s) = 1− e−sw, s > 0, (15)

where w is the waiting time of the job (the backlog u observed
by each job), and s > 0 is a free parameter. This cost could
be interpreted as the probability the job completes before its
deadline, where its deadline has an exponential distribution.
Note that cW (0, s) = 0.

A. Generating functions

It turns out that the cost function (15) is closely related to
the Laplace-Stieltjes transform, and before continuing, let us
first introduce some additional notation and results.

Definition 4 For non-negative discrete random variable B,
the generating function (z-transform) is

GB(z) , E[zB ].

Definition 5 (LST) The Laplace-Stieltjes transform of the
random variable X ≥ 0 is [13], [14]

X∗(s) , E[e−sX ], s > 0.

Throughout we will use the asterisk to denote the transform
of a random variable. As is well known, see, e.g., [13], [14],
these transforms, when defined, encompass all the necessary
information about a random variable in a single function and
the LST of the sum of two independent continuous random
variables, Z = X + Y , is Z∗(s) = X∗(s) · Y ∗(s).

B. M/G/1 in transform domain

Next we will state some well-known basic results for the
M/G/1 queue. Pollaczek-Khinchin transform formula for the
waiting time in the M/G/1 queue (i.e., without setup delay) is

W ∗0 (s) =
(1− ρ)s

s− λ(1−X∗(s))
. (16)

From [15], we find the LST of the waiting time for the M/G/1
queue, where the first job has an exceptional service time,

W ∗x (s) = p0 ·
s+ λ(X∗(s)−X∗0 (s))

s− λ(1−X∗(s))
,



where X0 is the service time of the job starting the busy
period, X the service time of all other jobs, and p0 is the
probability that the system is idle,

p0 =
1− λE[X]

1− λ(E[X]− E[X0])
.

Note that the waiting time of the first job of the busy period
is still zero in this model. For the M/G/1 with setup delay,
X0 = X +D, and

p0 =
1− ρ

1 + λE[D]
. (17)

and also the first job experiences the setup delay D, yielding

W ∗(s) = W ∗x (s) + p0(D∗(s)− 1)

=
1− ρ

1 + λE[D]
· λ+D∗(s)(s− λ)

s− λ(1−X∗(s))
, (18)

which means that

W ∗(s) = W ∗0 (s) ·W ∗e (s), (19)

where
W ∗e (s) =

λ+D∗(s)(s− λ)

s(1 + λE[D])
,

corresponds to the extra waiting time due to the setup delay.
Fuhrmann’s and Cooper’s decomposition property, shown in
(19), holds for a large class of M/G/1 queues with different
vacation models [16], [17]. (The setup delay D can also be
interpreted as one.) In the following section, we present such
results for the MX /G/1 queue that are the needed for our later
developments with respect to different value functions.

C. MX /G/1 in transform domain
Consider next the batch arrival process. The probability that

a randomly chosen job came from a size i batch is

iP{B = i}
E[B]

,

and the probability that a job is the ith job of a batch is

bi ,
∞∑
j=i

j P{B = j}
E[B]

1

j
=

P{B ≥ i}
E[B]

.

For a randomly chosen job, let A denote the number of jobs
there are ahead of it in the same batch,

P{A = i} = bi+1 =
P{B ≥ i+ 1}

E[B]
.

and the corresponding generating function is

GA(z) = E[zA] =
1

z E[B]

∞∑
i=1

P{B ≥ i} zi.

The service time of the whole batch is a random sum, H =
X1 + . . .+XB , for which we have

E[H] = E[B] · E[X],

E[H2] = E[B] ·V[X] + E[B2] · E[X]2,

H∗(s) = GB(X∗(s)),

where V[X] is the variance of X .

1) Without setup delay: For MX /G/1, the waiting time of
a randomly chosen job is the sum of the batch-level waiting
time and the service times of those jobs from the same batch
that happen to be ahead of the given job. For the former, we
can utilize (16),

W ∗b (s) =
s(1− ρ)

s− λb(1− GB(X∗(s)))
,

and the latter is given by GA(X∗(s)). Thus the LST for the
waiting time of a job is given by

W ∗0 (s) = W ∗b (s) · GA(X∗(s)),

yielding

W ∗0 (s) =
(1− ρ)sGA(X∗(s))

s− λb(1− GB(X∗(s)))
. (20)

2) With setup delay: Again, the M/G/1 result gives the
waiting time for the batch in the context of MX /G/1. The
first batch of the busy period increases the backlog to H+D,
whereas the size of the later batches is H . Consequently, from
(19) we obtain the LST for the batch-level waiting time with
a setup delay, W ∗b (s) ·W ∗e (s), where the LST for the extra
delay (penalty) due to the random setup time D is now given
by

W ∗e (s) =
λb + (s− λb)D∗(s)

(1 + λb E[D])s
. (21)

Furthermore, the individual jobs may have to wait additionally
until the jobs ahead of them within the same batch have been
served. Thus,

W ∗j (s) = W ∗b (s) ·W ∗e (s) · GA(X∗(s)), (22)

where GA(X∗(s)) corresponds to the waiting time within the
batch. We can also write

W ∗j (s) = W ∗0 (s) ·W ∗e (s).

Note that We depends on the batch arrival rate λb and setup
delay D, but not on the batch size, offered load ρ, or the
service time distribution X . For example, the penalty in terms
of the mean sojourn time is

lim
s→0+

W ∗e
′(s) =

2 E[D] + λb E[D2]

2(1 + λb E[D])
. (23)

Example 2 Suppose we have the MX /G/1 queue with geo-
metrically distributed batch size, B ∼ Geo1(q), so that

E[B] =
1

q
, and E[B2] =

2− q
q2

.

Then, for A we have

P{A = i} =
P{B ≥ i+ 1}

E[B]
=

(1− q)i

1/q
= (1− q)iq,

i.e., A ∼ Geo0(q). This result can be deduced also directly
by taking a sequence of Bernoulli trials, each succeeding
with probability of q. The number of failed trials preceding
a successful trial obeys the geometric distribution Geo0(q).



Hence, the mean number of jobs ahead of a random job in a
batch is

E[A] =
1− q
q

.

The mean sojourn time of a job in this MX /G/1 queue, E[T ],
is then

E[T ] =

setup penalty︷ ︸︸ ︷
2E[D] + λb E[D

2]

2(1 + λb E[D])
+

batch waits︷ ︸︸ ︷
λb E[H

2]

2(1− ρ) +

job waits︷ ︸︸ ︷
1− q
q
· E[X],

where E[H2] = E[X2]/q + E[X]2 · 2(1− q)/q2, yielding

E[T ] =

setup penalty︷ ︸︸ ︷
2E[D] + λb E[D

2]

2(1 + λb E[D])
+

M/G/1︷ ︸︸ ︷
λE[X2]

2(1− ρ) +

batch penalty︷ ︸︸ ︷
1− q
q(1− ρ) E[X] .

Note that as q → 1, batch sizes reduce to 1 and the batch
penalty disappears. Similarly, when D = 0, the setup penalty
vanishes.

D. Value functions for exponential cost function

Next we will give the main result of this section, the value
function for the MX /G/1 queue subject to the exponential cost
function:

Proposition 2 (waiting time) For the MX /G/1 queue with
batch arrival rate λb, batch size B, i.i.d. setup time D, and
a generally distributed service time X , subject to the (job-
specific) admission cost function (15), the mean cost is

c̄W (s) = 1−W ∗j (s), (24)

with W ∗j (s) given in (22), and the corresponding value func-
tion is

vW (u, s)− vW (0, s) =
E[B]GA(X∗(s))

s/λb + GB(X∗(s))− 1
·[

e−su − 1 +
s+ (1−D(s))(λb − s)

1 + λbE[D]
u

]
.

(25)

Proof: The mean cost with (15) is

E[1− e−sW ] = 1−W ∗j (s),

where W ∗j (s) is given in (22). Similarly, the value function is
obtained by substituting (15) into (4),

vW (u, s)− vW (0, s) =
λu

1− ρ
E[c(W0 + Y )− c(W )],

=
λu

1− ρ
E[e−sW − e−sW0e−sY ],

and thus,

vW (u, s)−vW (0, s) =
λu

1− ρ
(W ∗j (s)−W ∗0 (s)Y ∗(s)). (26)

The LST of Y = Y (u) is

Y ∗(s) =
1− e−su

su
,

and W ∗j (s) and W ∗0 (s) are given in (22) and (20), respectively.
Substituting these into (26) yields (25). �

c
(u

)

u

v
(u

)
−
v
(0

)

u

asy
mpto

tic
all

y

(a) Cost function (b) Value function

Fig. 4. Bounded and strictly increasing cost function and the corresponding
value function.

Without setup delay, E[D] = 0 and D∗(s) = 1, and the
expressions simplify considerably:

Corollary 3 For the MX /G/1 queue with batch arrival rate
λb, batch size B, no setup delay, and a generally distributed
service time X , subject to the (job-specific) admission cost
function (15), the mean cost is

c̄W (s) = 1− (1− ρ)sGA(X∗(s))

s− λb(1− GB(X∗(s)))
, (27)

and the corresponding value function is

vW (u, s)− vW (0, s) =
(su+ e−su − 1)E[B]GA(X∗(s))

s/λb + GB(X∗(s))− 1
.

(28)

Corollary 4 For the M/G/1 queue with arrival rate λ, gener-
ally distributed service time X and no setup delay, subject to
admission cost function (15), the mean cost is

c̄W (s) =
sE[X] +X∗(s)− 1

s/λ+X∗(s)− 1
, (29)

and the corresponding value function is

vW (u, s)− vW (0, s) =
su+ e−su − 1

s/λ+X∗(s)− 1
. (30)

Note that at the heavy-traffic limit when ρ → 1, 1/λ →
E[X] and (29) converges to 1, as expected. Figure 4 illustrates
an example cost function of type (15) and the corresponding
value function given by (30).

Example 3 Consider next the MX /G/1 queue without setup
delay and Corollary 3. Dividing c(w) and v(u) by s, and
then letting s→ 0, one obtains the waiting time metric [6],

v1(u)− v1(0) =
λu2

2(1− ρ)
,

c1(w) = w,

c̄1 =
λb E[H2]

2(1− ρ)
+ E[A]E[X].

Example 4 Consider then the ordinary M/G/1 queue without
setup delay and Corollary 4. Dividing c(u) and v(u) by λ, and
then taking the limit s → ∞ yields the energy-consumption
model from [12],

v(u)− v(0) = u,
ce(u) = 1(u > 0),

c̄e = ρ,



where ce(u) = λ c(u) is the cost rate in state u (zero if idle,
otherwise one), and c̄e = λ c̄ is the mean cost rate (probability
that the server is busy).

What we have just discovered is similar to LST and moment
generating functions of random variables; elementary and
compact expressions for the mean cost and value function for
the MX /G/1 queue subject to a rather general cost structure.
From these results, many interesting special cases can be
immediately obtained. First note that

cW (w, s) = 1− e−sw = sw − (sw)2/2! + . . . ,

so

cW (w, s) =

∞∑
i=1

(−1)i+1 s
i

i!
ci(w),

where the ci(w) are the polynomial cost functions for the
waiting time,

ci(w) = wi, i = 1, 2, . . . (31)

Consequently,

vW (u, s) =

∞∑
i=1

(−1)i+1 s
i

i!
vi(u),

where the vi(u) are the value functions corresponding to costs
ci(w). Therefore, in analogy with LST of a random variable,
we can compute any vi(u) directly from vW (u, s) by first
taking the nth derivative with respect to s, and then setting
s = 0:

vi(u) = (−1)i+1 lim
s→0

di

dsi
vW (u, s).

That is, the value function vW (u, s), given in (25), is the
generating function for the family of value functions with
respect to the polynomial costs (31). In the remainder of this
paper. we refer to v(u, s) = vw(u, s) simply as the value
generating function for waiting time in order to keep the
discussion short.

The same steps can be taken also with the mean costs, i.e.,
it is straightforward to compute an arbitrary moment E[W k]
of the waiting time W in the MX /G/1 queue by using the
identity

c̄(s) = E[c(W )] =

∞∑
i=1

(−1)i+1 s
i

i!
E[W i].

together with (24).

V. VALUE GENERATING FUNCTION FOR SOJOURN TIME

More generally, the cost paid upon arrival may depend also
on the service time x of the arriving job, c = c(w, x).

Proposition 3 The value function v(u) for the MX /G/1 queue
with i.i.d. setup delays D and admission costs defined by an
arbitrary function c(w, x) satisfies

v(u)− v(0) =
λu

1− ρ
E[c(W0 + Y,X)− c(W,X)], (32)

where W and W0 denote the waiting time of a job with
and without the setup delay, X is the service time, and
Y = Y (u) ∼ U(0, u) is independent of W0 and X .

Proof: Similar to that of Proposition 1, and omitted for
brevity. �

Next we study a cost structure, where, instead of waiting
time, the costs are defined as an exponential function of the
sojourn time (response time),

cT (w, x, s) = 1− e−s(w+x), s > 0, (33)

where w is the waiting time of the job, and x the service time
of the job, and s is a free parameter.

Proposition 4 (sojourn time) For the MX /G/1 queue with
batch arrival rate λb, batch size B, i.i.d. setup time D, and
a generally distributed service time X , subject to the (job-
specific) admission cost function (33), the mean cost is

c̄T (s) = 1−W ∗j (s) ·X∗(s), (34)

with W ∗j (s) given in (22), and the corresponding value func-
tion is

vT (u, s)− vT (0, s) = (vW (u, s)− vW (0, s))X∗(s). (35)

Proof: The mean cost is

c̄T (s) = E[cT (U,X, s)] = 1−W ∗j (s)X∗(s).

Substituting cT (u, x) into (32), one obtains

vT (u, s)− vT (0, s) =
λu

1− ρ
E[e−s(W+X) − e−s(W0+Y+X)]

which yields (35). �

Corollary 5 (sojourn time for M/G/1) For the M/G/1 queue
with arrival rate λ and general service time distribution X ,
subject to costs (33), the mean cost is

c̄T (s) =
sE[X] +X∗(s)− 1

s/λ+X∗(s)− 1
X∗(s), (36)

and the corresponding value function is

vT (u, s)− vT (0, s) = (vW (u, s)− vW (0, s))X∗(s)

=
su+ e−su − 1

s/λ+X∗(s)− 1
X∗(s). (37)

A. Summary of the relationships
We have obtained compact expressions for the value gener-

ating functions with respect to the waiting and sojourn time,
which we summarize here. For the MX /G/1 queue with setup
delay D, the value generating functions are

vW (u, s)− vW (0, s)=
λu

1− ρ

(
W ∗
e (s)−

1− e−su

su

)
W ∗

0 (s),

vT (u, s)− vT (0, s)=
λu

1− ρ

(
W ∗
e (s)−

1− e−su

su

)
T ∗
0 (s),

where W ∗0 (s) and T ∗0 (s) = W ∗0 (s)X∗(s) denote the LST of
the waiting and sojourn time in the MX /G/1 queue without a
setup delay, and W ∗e (s) is the LST of the additional waiting
time due to setup delay We and given in (21).



VI. APPLICATIONS

In this section, we show how the new results can be utilized.

A. To switch off, or not to switch off

Let us first discuss briefly switching-off policies. We deter-
mine when an idle server should be switched off, and when
it should be kept running. Inherently, this is a question about
the energy-performance trade-off. By switching off, we hope
to save some energy, but at the same time, response times
increase. We let e denote the cost of energy per unit time
incurred when the server is running. The mean energy cost if
the server is switched-off follows immediately from (17),

c̄e = (1− p0)e =
ρ+ λb E[D]

1 + λb E[D]
e. (38)

The value function with respect to energy consumption is [6],

ve(u)− ve(0) =
u

1 + λb E[D]
e. (39)

The QoS is characterized by an arbitrary cost function, e.g., a
polynomial

c(w) =
∑
i

aiw
i.

Then let the random variable C(w) denote the total cost
incurred by a batch,

C(w) , c(w) + c(w+X1) + . . .+ c(w+X1 + . . .+XB−1).

The optimal switch off decision can be deduced in (at least)
three different ways:

1) The straightforward method is to compute the mean cost
c̄ for system (i) that keeps the server running and thus
avoids setup delays, and system (ii) that switches the
server off when idle and thereby exposes some jobs to
the ensuing setup delay. Given the mean costs, one can
simply choose the strategy that has lower mean cost.

2) Suppose that we decide to keep the server always
running, and have computed the corresponding value
function for the whole system (without setup delay),
denoted by v∗(u). The energy consumption is fixed at
a constant level e, and it thus does not show up in
the value function. Then consider deviating from the
standard action by switching the server off for one idle
period. Switching off decreases the expected costs if

E[C(D)− C(0) + v∗(D +H)− v∗(H)] <
e

λb
.

3) Alternatively, let v∗(u) denote the value function of
the system when the policy is to switch the server
off whenever it becomes idle. In this case, the energy
consumption, given by (39), is included explicitly in the
value function v∗(u). Then consider keeping the server
running when the last customer exits, which is equivalent
to keeping the backlog artificially in state u = ε by
feeding very small (infinitesimal) virtual jobs until the

next real job arrives. Thus, keeping the server running
is advantageous if v∗(ε) < v∗(0), which yields

v∗(ε)− v∗(0)

ε
< 0,

and as ε→ 0, the condition reduces to checking the sign
of the derivative at u = 0,[

d

du
v∗(u)

]
u=0

< 0.

Considering the weighted cost model for jobs, with the
aid of the value generating function (25), we can write
an explicit expression for keeping the server running,[

d

du

∑
i

ai

[
di

dsi
v(u, s)

]
s=0

]
u=0

>
e

1 + λb E[D]
.

The summation on the left-hand side is a generic cost
function related to the QoE as perceived by jobs, and
the term on the right-hand side with the constant factor
e corresponds to the energy consumption.

From each of the above, we can deduce the (same) critical
cost for energy above which the server should be switched off
when idle. Note that in the latter two cases, we only need to
analyze one system, whereas with the first option one needs
to compute the mean cost for two systems. Because we have
Poisson arrivals we need not consider policies that switch a
server off and switch it back on again before there is an arrival.
Similarly, we ignored the policies that delay the switch on after
a job has arrived.

B. Dispatching policies

The value function for a single MX /G/1 queue is also useful
in the context of parallel servers (see Figure 1). In particular, it
can be used to develop efficient dispatching (routing) policies
by carrying out one policy improvement step. This method,
first proposed in [18], has been used in numerous papers, see,
e.g., [19], [20], [21], [22], and [23, Sec.10.3. and 11.5]. The
basic steps are as follows:

1) Choose an appropriate basic dispatching policy, denoted
with α0, such that the arrival process to each server is
a (server-specific) Poisson batch arrival process.

2) With α0, the Poisson batch arrival process is split into
n independent streams, with server-specific batch size
distributions, and the system decomposes into n parallel
MX /G/1 queues that can be analyzed independently.

3) The value function for each MX /G/1 can be computed,
and the system’s value function is the sum of those,

v(z) = v1(u1) + . . .+ vn(un),

where z = (u1, . . . , un) denotes the state of the sys-
tem (in our case, the backlogs ui is a sufficient state
description).

4) The one step policy improvement yields a new policy.
Let ξ = ξ(x) denote a routing decision that assigns all
jobs of a batch x in some order to the servers, and c(z, ξ)



the corresponding immediate cost, z ⊕ ξ the resulting
state. Then

αFPI(z,x) ∈ arg min
ξ

(c(z, ξ) + v(z⊕ ξ)− v(z)) .

Ties can be resolved, e.g., randomly.

The basic dispatching decision may depend on batch size B,
or any batch-specific parameters such as class, weight or prior-
ity. The basic policy can also split batches to several servers as
long as the decision is static and each server receives a Poisson
batch arrival process. One such example is the size-interval-
task-assignment (SITA) policy that dispatches, e.g., all short
jobs to server 1 and long jobs to server 2. SITA is often (but
not always) a good policy with FCFS [24]. Similarly, a random
Bernoulli split of jobs to two or more servers decreases the
burstiness in the arrival process, which in turn tends to improve
the performance with FCFS. However, the static policy may
not depend on the state of the system (i.e., the backlogs in
the servers), or the parameters of the batch in such a way that
the resulting arrival process to some server would not be a
Poisson batch arrival process.

For numerical examples, we refer to the cited publications.
Unfortunately, it is often difficult to go further, i.e., to carry
out the second policy improvement step, because the first step
already yields a dynamic policy for which it is significantly
harder to compute a value function than for a single MX /G/1
queue. In this case, one can consider the lookahead approach,
where the tentative action deviating from the basic policy
includes also the next arriving job(s) [25]. In practice, one
step of policy improvement often yields much improved, and
near optimal, policies.

VII. CONCLUSIONS

We have studied the M/G/1 and MX /G/1 queues subject
to general cost structures. Particular attention was paid to
exponential cost structures for waiting and sojourn time with
a free parameter s. We obtained compact closed-form ex-
pressions, defined solely in terms of the arrival rate, the
batch-size specific generating functions GA(z) and GB(z), and
LST of the service time distribution, X∗(s), for the mean
costs and the value functions. These cost functions include
many often used cost structures such as the waiting time, the
slowdown, and energy consumption. We refer to the value
functions as value generating functions, because, as with, e.g.,
moment generating functions, they summarize whole families
of cost structures and their corresponding value functions. The
studied exponential cost functions, having convenient simple
expressions for the mean costs and value functions, serve as
a building block for more complex scenarios.

ACKNOWLEDGEMENTS

This work was supported by the Academy of Finland in
the FQ4BD and TOP-Energy projects (grant nos. 296206 and
268992).

REFERENCES

[1] K. R. Krishnan, “Joining the right queue: a Markov decision rule,” in
Proc. of the 28th Conference on Decision and Control, Dec. 1987, pp.
1863–1868.

[2] N. Argon, L. Ding, K. Glazebrook, and S. Ziya, “Dynamic routing of
customers with general delay costs in a multiserver queuing system,”
Probability in the Engineering and Informational Sciences, vol. 23, pp.
175–203, 2009.

[3] R. R. Weber, “On the optimal assignment of customers to parallel
servers,” Journal of Applied Probability, vol. 15, no. 2, pp. 406–413,
Jun. 1978.

[4] A. Hordijk and G. Koole, “On the optimality of the generalised shortest
queue policy,” Prob. Eng. Inf. Sci., vol. 4, pp. 477–487, 1990.

[5] O. Akgun, R. Righter, and R. Wolff, “Multiple server system with
flexible arrivals,” Advances in Applied Probability, vol. 43, pp. 985–
1004, 2011.

[6] E. Hyytiä, A. Penttinen, and S. Aalto, “Size- and state-aware dispatching
problem with queue-specific job sizes,” European Journal of Opera-
tional Research, vol. 217, no. 2, pp. 357–370, Mar. 2012.

[7] E. Hyytiä, R. Righter, and S. Aalto, “Task assignment in a heterogeneous
server farm with switching delays and general energy-aware cost struc-
ture,” Performance Evaluation, vol. 75–76, no. 0, pp. 17–35, May-June
2014.

[8] M. Harchol-Balter, K. Sigman, and A. Wierman, “Asymptotic conver-
gence of scheduling policies with respect to slowdown,” Perform. Eval.,
vol. 49, no. 1-4, pp. 241–256, Sep. 2002.

[9] E. Hyytiä, S. Aalto, and A. Penttinen, “Minimizing slowdown in
heterogeneous size-aware dispatching systems,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, pp. 29–40, Jun. 2012, (ACM
SIGMETRICS/Performance conference).

[10] E. Hyytiä and R. Righter, “Routing jobs with deadlines to heterogeneous
parallel servers,” Operations Research Letters, vol. 44, no. 4, pp. 507–
513, 2016.

[11] E. Hyytiä, R. Righter, and J. Virtamo, “Meeting soft deadlines in single-
and multi-server systems,” in 28th International Teletraffic Congress
(ITC’28), Würzburg, Germany, Sep. 2016.

[12] A. Penttinen, E. Hyytiä, and S. Aalto, “Energy-aware dispatching
in parallel queues with on-off energy consumption,” in 30th IEEE
International Performance Computing and Communications Conference
(IPCCC), Orlando, FL, USA, Nov. 2011.

[13] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley Interscience,
1975.

[14] H. C. Tijms, Stochastic Models, An Algorithmic Approach. John Wiley
& Sons, 1994.

[15] P. D. Welch, “On a generalized M/G/1 queuing process in which the first
customer of each busy period receives exceptional service,” Operations
Research, vol. 12, no. 5, pp. 736–752, 1964.

[16] S. Fuhrmann and R. Cooper, “Stochastic decomposition in the M/G/1
queue with generalized vacations,” Operations Research, vol. 33, no. 5,
pp. 1117–1129, 1985.

[17] J. G. Shanthikumar, “On stochastic decomposition in m/g/1 type queues
with generalized server vacations,” Operations Research, vol. 36, no. 4,
pp. 566–569, 1988.

[18] J. M. Norman, Heuristic procedures in dynamic programming. Manch-
ester University Press, 1972.

[19] K. R. Krishnan and T. J. Ott, “State-dependent routing for telephone
traffic: Theory and results,” in IEEE Conference on Decision and
Control, vol. 25, Dec. 1986, pp. 2124–2128.

[20] K. R. Krishnan, “Joining the right queue: a state-dependent decision
rule,” IEEE Transactions on Automatic Control, vol. 35, no. 1, pp. 104–
108, Jan. 1990.

[21] S. A. E. Sassen, H. C. Tijms, and R. D. Nobel, “A heuristic rule for
routing customers to parallel servers,” Statistica Neerlandica, vol. 51,
no. 1, pp. 107–121, 1997.

[22] S. Bhulai, “On the value function of the M/Cox(r)/1 queue,” Journal of
Applied Probability, vol. 43, no. 2, pp. 363–376, Jun. 2006.

[23] P. Whittle, Optimal Control: Basics and Beyond. Wiley, 1996.
[24] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young, “Surprising

results on task assignment in server farms with high-variability work-
loads,” in Proc. of SIGMETRICS, 2009, pp. 287–298.

[25] E. Hyytiä, “Lookahead actions in dispatching to parallel queues,”
Performance Evaluation, vol. 70, no. 10, pp. 859–872, 2013, (IFIP
Performance’13).


