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Abstract—We consider single- and multi-server systems, where
jobs have a maximum waiting time (deadline) defined, e.g., by a
service level agreement. A fixed cost is associated with deadline
violations and the task is to minimize the long-run cumulative
costs. Job sizes (service durations) are observed upon arrival, and
current queue backlogs are known. For a single FCFS server,
the optimization task is to find the optimal admission policy that
may reject a job upon arrival if admitting it would cause in
future one or more deadlines to be violated (in expectation). For
parallel FCFS servers, the policy must (i) either accept or reject
a job upon arrival, and if accepted, (ii) assign it to one of the
servers. We derive efficient deadline-aware policies in the MDP
framework. For a single server, we obtain the optimal admission
policy. For dispatching to parallel servers, we develop efficient
heuristic admission and dispatching policies, whose performances
are evaluated by means of numerical examples. Additionally, we
give some exact closed-form results for heavy-traffic limits.

Index Terms—admission control; task assignment; deadline;
QoE; parallel processing; cloud computing; non-linear cost

I. INTRODUCTION

Today’s Internet is full of services, requiring rapid and
timely responses. For example, for interactive applications
such as the large-scale online services provided by Google,
Facebook and Amazon, subsecond response times are a com-
mon objective [1]. In particular, tails of the service time are
seen as one of the most crucial performance measures [2]
affecting the quality of experience (QoE), i.e., how customers
perceive the service, which then eventually translates to profits
(or losses). Therefore, in this paper we assume jobs have
deadlines for waiting times until the start of service. If this
deadline is exceeded, a fixed cost is incurred. In particular,
we assume a best effort loss system where a job missing its
deadline may as well be discarded without any additional cost
other than the cost due to the missed deadline.

In general, the possible controls to achieve SLA goals are
(i) admission control, (ii) dispatching rules, (iii) scheduling
within a server / data-center, (iv) job migration, and (v) control
of service rate, e.g., via number of servers or speed scaling.
We consider the first two: admission control and dispatching.

We first consider a single-server system modelled as an
M/G/1-FCFS queue, where jobs have a maximum waiting
time τ that should not be exceeded, or the fixed unit cost
is incurred. The dynamic decision problem is to find the
optimal admission policy that minimizes long run costs. Then
we consider admission and dispatching to a set of parallel
heterogeneous FCFS servers. The routing decision must be

made upon arrival and is irrevocable, i.e., a job cannot be
moved to another queue later. (Job reallocations can incur large
overheads.)

Our main contributions are the following: (i) we derive
new theoretical results for the M/G/1 queue subject to this
non-linear cost structure (the so-called value function with
respect to deadline violations) that enable efficient static and
dynamic admission policies; (ii) we give exact closed-form
expressions for the probability of deadline violations, the
steady-state distribution, and the value function (at the heavy-
traffic limit) in M/M/1; (iii) we devise an explicit method for
solving the optimal admission policy for the M/G/1 queue; and
(iv) we derive efficient heuristic admission and dispatching
policies for systems of parallel servers. The performance of
the obtained deadline-aware policies are further evaluated
numerically, giving insight into this important cost structure.

The rest of the paper is organized as follows. Section II
formally introduces the model and notation. In Section III, we
analyze a single M/G/1 queue with respect to deadlines, and
complement this with numerical examples in Section IV. In
Section V, we apply our results to derive efficient dynamic
dispatching policies for the original multiserver problem. Sec-
tion VI concludes the paper.

A. Related work

Our work is different from past work in that our policies
are dynamic, they minimize costs due to deadline violations,
and they take into account the size of arriving jobs. Liu et al.
[3] consider service-level-agreements (SLAs) in the context
of e-commerce with a general class of SLAs comprising
throughput, mean delay and (soft) deadlines. Web servers
are modelled as a queueing network with generalized pro-
cessor sharing (GPS) servers. The decision variables are the
probabilities for static routing and the weights for the GPS
scheduling. (Note that, e.g., Hadoop uses FCFS by default.
This is often also the case in the context of supercomputing
where concurrent multitasking may be impractical or even
infeasible.) Saovapakhiran et al. [4] consider average delay
SLAs in the context of cloud computing. The mean delays
follow directly from Little’s theorem, which simplifies their
analysis considerably.

Stidham [5] considers the admission problem. The models
closest to ours are the admission control to an GI/M/1 queue
and to two parallel GI/M/1 queues. However, the cost structure



is different: each admitted job gives a fixed reward, while costs
are incurred according to a convex holding cost rate function of
number of jobs in (each) server. Lehoczky [6] studies a single
GI/M/1 queue with deadlines in heavy-traffic. Glazebrook et
al. [7] consider a system of parallel (exponential) servers
with abandonments. These works, however, are different as
the admission control and routing (if any) are based on the
number of jobs. Li and Glazebrook [8] consider a single server
with jobs that leave the system if their waiting time exceeds a
random class-dependent waiting time. The scheduling problem
is to minimize the number of abandonments. In contrast, we
know the deadline of each job and obtain a critical-backlog
policy that depends also on the (exact) size of the arriving job.

Gupta and Harchol-Balter [9] study a system where a PS
server, preceded by a FCFS queue, admits at most k jobs
concurrently. The aim is to minimize the mean delay. The
minimization of the mean delay, or some other related linear
quantity such as slowdown, has been the typical objective also
for routing (dispatching) problems (without the option to reject
jobs). See, for example, [10], [11], [12], [13], [14], and the
references therein. For related scheduling problems see [15],
[16], [17]. In contrast, [18] studies a closely related model
with deadlines, but without the option to reject jobs.

II. PRELIMINARIES

A. Model and notation

We assume a service level agreement (SLA) in the form of
the maximum waiting time τ . The maximum tolerated waiting
time is simply referred to as the deadline. If this deadline is
exceeded, a fixed cost of 1 is incurred. We also allow the
policy to reject a job upon arrival. For simplicity, we assume
the same unit cost for rejected jobs as for deadline violations
(or higher cost for deadline violations), even though it would
be possible to consider models where discarding a job incurs,
e.g., a higher cost than missing a deadline. Consequently, we
limit ourselves to admission policies that discard a new job
unconditionally when the target deadline cannot be met.

More formally, the cost function is a step-function of
waiting time in queue, W , where, if W = w,

dτ (w) = I(w > τ),

so the mean cost rate in terms of SLA violations is

r = λP{W > τ or job is rejected}.

We consider FCFS queues, with Poisson arrival rate λ, and
i.i.d. service times denoted by Xj ∼ X . Job sizes become
known upon arrival, and hence, for a single server, u, the
backlog in the queue, gives the relevant state information.
In the multi-server setting, jobs are assigned (dispatched)
to a server immediately upon arrival and the assignment is
irrevocable. The service rate at server i is ci, so the service
time of job j if assigned to server i is Xj/ci. We denote
the offered load λE[X] by ρ (in the multi-server setting,
ρ = λE[X]/

∑
i ci), and f(x) is the pdf of the job size

distribution, F (x) = P{X ≤ x} the corresponding cdf, and
F̄ (x) = 1− F (x).

B. Value functions

The value function, well known in the context of Markov
decision processes [19], [20], is defined as the expected
difference in costs between a system that is initially in a given
state s and a system in equilibrium,

v(s) := lim
t→∞

E[Vt(s)− r t],

where the random variable Vt(s) denotes the costs the system
incurs during (0, t) when initially in state s, and r is the long-
run mean cost rate. The value function enables us to quantify
how much better or worse initial state s2 is than s1 simply by
computing v(s2)− v(s1), which is the important quantity for
policy iteration. In this paper, we will derive and utilize value
functions related to the M/G/1 queue subject to deadline cost
structure.

III. SINGLE-SERVER ANALYSIS

We start by analyzing a single M/G/1 queue where jobs can
be discarded upon arrival in order to minimize the long-run
rate of deadline violations.

A. Admission policies ξ(u)

We let the random variable U denote the backlog in the
queue, and consider admission policies in which a function
ξ(u) defines a threshold for the maximum service time a job
may have in order to be admitted to the queue in state U = u,
i.e., jobs of size x > ξ(u) are rejected. We will show that such
a policy is optimal, and how it can be efficiently computed.

Because it is optimal to unconditionally discard jobs whose
deadline τ would be violated, we start with a basic policy that
discards such jobs and accepts the rest:

Definition 1 (Basic admission policy):

ξ0(u) :=

{
∞, u ≤ τ,
0, u > τ.

(1)

This policy is also the individually optimal policy for
arriving jobs to minimize their own costs. The M/G/1 queue
with ξ0(u) is clearly stable for any λ ≥ 0, and the mean cost
rate (blocking rate) is

r := λP{U > τ}. (2)

This simple admission policy can be optimal:
Proposition 1: The basic admission policy ξ0(u) is optimal

for M/D/1 queues.
Proof: This follows trivially from the fact that all jobs are

identical and therefore there is no reason to wait for a better
job to arrive later (waiting actually includes a risk that no job
arrives before the server idles).

In general ξ0(u) is not the optimal admission policy (and
more jobs will be rejected because of the negative externalities
they would impose on future jobs if admitted). The standard
approach to find the optimal policy in the MDP framework is
based on studying the value function defined Section II-B.
Before discussing this in detail, we first demonstrate how
the steady-state distribution can be computed for an arbitrary
admission policy ξ(u), with ξ(u) = 0 for u > τ .



B. Steady-state distribution of backlog

In this section, we study how to determine the steady-
state distribution of the backlog U in a single M/G/1 queue
subject to an arbitrary admission policy ξ(u). This quantity
then allows one to examine, e.g., the service-time distribution
of the admitted and rejected jobs with the given ξ(u).

To this end, we adapt the level-crossing methodology devel-
oped in [21], where the workload distribution in a finite size
buffer was studied. In this system, jobs are admitted as long
as they fit in the buffer, i.e., the size (service time) X of the
arriving job is less than the free space in the buffer, which in
our context would translate to a deadline for job completion
time (in contrast to waiting time).

For an arbitrary admission policy, ξ(u), such that ξ(u) = 0
for u > τ , we let g(u) denote the unknown continuous density
function of the steady-state distribution of U for U > 0, and
let π0 = P{U = 0}. The probability flow downwards across a
test level at u is simply g(u). The probability flow upwards is
due to jobs that arrive when the backlog is below the level u,
U < u, and the service time of the job X is sufficiently long
to cause a jump across the level u, U +X > u, and the job is
admitted, i.e., X < ξ(u). This results in the Volterra integral
equation of the second kind,

g(u) = λ

(
π0Q(0, u) +

∫ u

0

g(v)Q(v, u) dv

)
, (3)

where Q(v, u) is the probability that a job arriving in state
v < u is admitted and the backlog increases beyond u,

Q(v, u) = (F (ξ(v))− F (u− v))
+
,

and where (x)+ = max{x, 0}.
Because ξ(u) = 0 for u > τ , Q(v, u) = 0 for v > τ , so the

Volterra equation (3) reduces to

g(u) = λ

(
π0Q(0, u) +

∫ τ

0

g(v)Q(v, u) dv

)
, u > τ, (4)

and it remains to determine g(u) for 0 < u ≤ τ .
In general, the above integral equation can be solved nu-

merically by first setting π0 = 1. Then for arbitrary u, (3)
is defined in terms of g(v) with v ≤ u, and g(u) can be
worked out iteratively in the forward direction, and then the
whole distribution, including the atom π0, is normalized, as
explained in [21].

Now that the equilibrium distribution of the backlog in
the M/G/1 queue with an arbitrary admission policy ξ(u) is
available, several other interesting performance quantities can
be determined. The job rejection rate is

r = λ

(
1− π0 F (ξ(0))−

∫ τ

0

g(u)F (ξ(u)) du

)
. (5)

The rejection probability is P{X > ξ(U)} = r/λ, and the
fraction of time the server is busy (carried work) is simply

ρ∗ = 1− π0.

Let p(x) denote the probability that a job with service time x
is admitted to the queue. From PASTA,

p(x) = π0 1(ξ(0) ≥ x) +

∫ τ

0

g(u)1(ξ(u) ≥ x) du.

When ξ(u) is a decreasing function of u, the above simplifies
significantly. For the special case of the M/M/1 queue with the
basic admission policy ξ0(u), we have a closed-form solution:

Proposition 2: The steady-state distribution of the M/M/1
queue with deadline τ and the basic admission policy ξ0(u)
is given by

π0 =
µ(µ− λ)

µ2 − λ2e(λ−µ)τ
,

g(u) = π0λ e
λ min{u,τ}−µu.

(6)

Proof: Substitute the above trial into (4).
Corollary 3: The mean cost rate in the M/M/1 queue with

the basic admission policy ξ0(u) is

r = λ

∫ ∞
τ

g(u) du =
λ2(µ− λ)

µ2e(µ−λ)τ − λ2
. (7)

C. Value function for the M/G/1 queue

For an arbitrary ξ(u) with ξ(u) = 0 for u > τ , we obtain
the following general result for the value function v(u).

Proposition 4: The value function v(u) for the M/G/1
queue with arbitrary admission policy ξ(u) with respect to
deadline violations is

v(u)− v(τ) = (λ− r)(u− τ), u > τ, (8)

and, for 0 < u ≤ τ , with y = ξ(u), it satisfies

v′(u) = −r+λF̄ (y)+λF (y)E[v(u+X)−v(u) |X≤y]

= −r+λ F̄ (y)+λ

∫ y

0

f(x) [v(u+x)−v(u)] dx
(9)

with the boundary condition v′(0) = 0.
Proof: When u > τ no new jobs are accepted until the

backlog decreases to the level τ , after a deterministic time
interval u − τ . Thus, v(u) − v(τ) represents the difference
between the mean number of jobs arriving in this interval
and the costs that the system on average incurs in the same
interval (without conditioning on the initial state, i.e., starting
in equilibrium), yielding (8).

For 0 < u ≤ τ , consider an indefinitely small time interval
δ such that δ < u ≤ τ , and let y = ξ(u). Then, referring to
Figure 1, we have, by definition,

v(u) =
(
λ F̄ (y)− r

)
δ + λF (y) δ E[v(u+X) |X ≤ y]

+ (1− λF (y) δ) v(u− δ),

which leads to (9).
The boundary condition v′(0) = 0 follows by considering

an initially empty system, u = 0, until the arrival of the first
accepted job. The mean time to this event is 1/(λF (y)), where
y = ξ(0). It follows that

v(0) =
λ F̄ (y)− r
λF (y)

+ E[v(X) |X ≤ y].

Substitution into (9) with u = 0 yields v′(0) = 0.
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We also have, with y = ξ(τ),{
v′(τ−) = (1 + ρF (y))(λ− r)− λF (y)
v′(τ+) = λ− r. (10)

D. On computing v(u) for M/G/1

Note that, given r and ξ(u), v′(u) in (9) depends only on
the values of v(u′) with u′ ≥ u, so using (8), it is possible
to solve the differential equation backwards from u = τ to
u = 0. The problem is that in general we do not know the
mean cost rate r even for the basic admission policy ξ0(u).
One option is to solve the Volterra equation (4) and then utilize
(5) to determine r. Alternatively, it is also possible to estimate
r by process simulation.

However, in the case of a discrete state-space system,
solving Howard’s equations would yield both the relative
values (i.e., the value function apart from an unimportant
additive constant) and the mean cost rate. It turns out that this
is the case also in our problem when the boundary condition
(9) is taken into account. When the differential equation (9)
is solved (numerically) backwards from u = τ to u = 0, e.g.,
using the Runge-Kutta method with a given value of r, the
resulting value v′(0) at the origin depends parametrically on
r, v′(0) = v′(0)[r]. The value of r is then uniquely determined
by the condition v′(0)[r] = 0. Generally, this is a non-linear
equation and has to be solved numerically using some iterative
method.

The situation is illustrated in Figure 2, where the correct r
is determined for the M/M/1 queue with the basic admission
policy ξ0(u). The left graph shows three solutions for the dif-
ferential equation obtained with r ∈ {0.2, 0.25, 0.3}, and the
right graph depicts v′(0) as a function of (trial) r. We observe
that the differential equation system behaves systematically
and it is straightforward to determine the correct r that satisfies
the boundary condition of (9). As a result, we obtain both the
value function and the mean cost rate for a given ξ(u).

E. Exact solutions with ξ0(u) when ρ→ 1 and ρ→∞
We first consider the M/M/1 queue when ρ → 1, and then

the M/G/1 queue when ρ→∞. If jobs missing their deadlines
were not discarded, these queues would become unstable.
However, stability is not an issue in our case. Interestingly, it
turns out that in these specific cases, we obtain exact closed-
form expressions for several important quantities.

For the M/M/1 queue at the “heavy-traffic” limit where ρ→
1, we have the following result.
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Fig. 2. Determination of the (correct) mean cost rate r for M/M/1 with
λ = µ = 1 and τ = 2, corresponding to the solution with v′(0) = 0.

Proposition 5: For the M/M/1 queue with λ = µ and ξ0(u),
the value function is initially a quadratic and then a linear
function of the backlog u,

v(u)−v(τ) =


λ

1 + λτ

2 + λτ
(u− τ), u > τ,

λ2

4 + 2λτ
(u2−τ2), 0 ≤u ≤ τ,

(11)

where

v(τ) =
(λτ)2(3 + 2λτ)/6− 1− λτ

(2 + λτ)2
. (12)

Proof: The value function (11) can be shown to satisfy (8)
and (9) simply by substitution, and hence it is the correct value
function. For the constant term v(τ), we utilize the identity

E[v(U)] = π0v(0) +

∫ ∞
0

g(u) v(u) du = 0,

where π0 and g(u) define the steady-state distribution of the
backlog, given by (6) when λ→ µ. Hence,

π0(v(0)− v(τ)) +

∫ ∞
0

g(u) (v(u)− v(τ)) du = −v(τ),

and substituting (11) into the left-hand side gives (12).
Even though a queue rejecting jobs when the backlog

U > τ is always stable (for any λ ≥ 0), solving the value
function numerically for u < τ from the differential equation
(9) becomes difficult even for M/M/1 when λ is large, as
small errors in v(u′) for u′ ≥ u can have a big impact on
v′(u), and consequently, on the solution itself. Fortunately, the
asymptotic case λ → ∞ can be deduced for general service-
time distributions:

Lemma 6: When λ → ∞, the value function for M/G/1
with ξ0(u) satisfies

v(u)− v(τ) =
u− τ
E[X]

, u ≥ 0. (13)

Proof: Suppose u ≥ τ . When λ is large, the backlog in
the queue decreases only slightly below τ before a new job
arrives. Consequently, the job admission rate, λ− r, tends to
1/E[X] as λ→∞, and (8) reduces to

v(u)− v(τ) =
u− τ
E[X]

, u ≥ τ. (14)

Suppose next that u < τ . Let N denote the number of
(practically instantaneously) admitted jobs until the backlog



exceeds τ , i.e., N is the smallest number (“stopping time”)
such that

u+X1 + . . . XN > τ.

Focusing on the admitted jobs, we have

v(u) = E[−N + v(u+X1 + . . . XN )].

Applying (14) on the right-hand side then gives,

v(u) = −E[N ] +
E[u− τ +X1 + . . . XN ]

E[X]
+ v(τ).

For the random sum, we can apply Wald’s theorem [19],

v(u)− v(τ) = −E[N ] +
u− τ
E[X]

+
E[N ]E[X]

E[X]
=
u− τ
E[X]

,

and (14) holds for all u ≥ 0.
The reference state can be chosen arbitrarily, and, e.g.,

v(u)− v(0) =
u

E[X]
. (15)

Note also that with λ− r = 1/E[X], the derivative v′(τ−) of
(10) reduces to λ−r equalling v′(τ+), i.e., in this limit, there
is no jump in the derivative at u = τ . This is obvious also
from (13) and (15), which are valid for all u ≥ 0.

Proposition 7: The value function for M/G/1 with ξ0(u) in
the heavy-traffic limit, when λ→∞, is

v(u) =
u− τ
E[X]

− E[X2]

E[X]2
. (16)

Proof: At the heavy-traffic limit, a job with service time
X is admitted to the system each time and immediately after
the backlog decreases below u = τ . That is, jobs are admitted
after i.i.d. time intervals X . Consequently, the residual time
to next arrival has pdf

fr(t) =
t f(t)

E[X]
.

Hence, the steady-state distribution at the heavy-traffic limit
is g(u) = 0 for u < τ , and for states u = τ + t ≥ τ ,

g(τ + t) =
t f(t)

E[X]
, t ≥ 0.

The identity
∫∞
0
g(u) v(u) du = 0 (as π0 = 0) with (13) gives

v(τ) = −
∫ ∞
0

t f(t)

E[X]
· t

E[X]
dt = −E[X2]

E[X]2
.

Substituting this into (13) completes the proof.
Trivially, when λ → 0, no job arrives, no deadlines are

violated, and therefore both r → 0 and v(u) → 0. Hence,
for very small values of λ, the value function is practically
constant zero, then at ρ = 1 we obtain the quadratic form (for
u < τ and M/M/1), which then transforms to the straight
line with slope µ as ρ → ∞ (for a general service-time
distribution). This is illustrated in Figure 3 with the standard
M/M/1 queue.
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Fig. 3. Value functions for M/M/1 with τ=2 when ρ={0.5, 1, 2, 4}, and at
the heavy-traffic limit when ρ→∞ (dashed line).

F. Quadratic approximation for v(u)

Motivated by the special case of M/M/1 with ξ0(u) and
ρ = 1, we propose a quadratic approximation for v(u) when
0 ≤ u ≤ τ . This approximation can be expected to be a
good match when ρ is not too large. (See the previous section.
When ρ is large, linear approximation should be used instead.)
In particular, our proposal is

v̂(u)− v̂(τ) =

{
(λ− r)(u− τ), u > τ,

A(u2 − τ2), 0 ≤u ≤ τ,
where the constant A can be defined in different ways. First,
requiring that v̂(0)− v̂(τ) = v(0)− v(τ), yields

A1 =
v(τ)− v(0)

τ2
. (17)

Second, we can set v̂′(τ−) = v′(τ−) (in addition to v̂′(u) =
v′(u) = 0) and use (10), yielding

A2 =
(1 + ρF (y))(λ− r)− λF (y)

2τ
, (18)

with y = ξ(τ). We recall that for the M/M/1 queue with ξ0(u)
and ρ = 1, the value function is quadratic, these expressions
are exact, and A1 = A2. However, in general, with an arbitrary
ξ(u) and an arbitrary arrival process, this is not the case. (See
Figure 5, discussed later.) This approximation will be exploited
in Sections IV-A and V-C.

G. Policy iteration in a single M/G/1 queue

Let us now consider the single M/G/1 queue, starting with
using ξ0(u). Let v(u) and r denote the value function and
mean cost rate with ξ0(u).

a) Policy iteration: Suppose u ≤ τ when a job with
service time x arrives, so ξ0(u) would accept the job, but
that may not be the optimal action. The first policy iteration
(FPI) step rejects the job if the expected increase in future
costs would be higher than the cost of discarding the job
immediately, i.e., if

v(u+ x)− v(u) > 1.

As v(u) is an increasing function of u for ξ0(u) (and for any
other reasonable admission policy) and it has a linear tail with
positive slope λ−r, the above defines a new admission policy
when u ≤ τ, ξFPI(u) = y, where y is such that v(u + y) −
v(u) = 1. Note that ξFPI(u) is finite for every u ≤ τ .
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Fig. 4. Static and dynamic admission policies for an M/G/1 queue.

b) Dynamic rule from bound: Determining ξFPI(u) re-
quires either an exact (numerical) solution for v(u) or at least
an approximation such as those discussed in Section III-F.
However, we can obtain an improved policy also by using a
lower bound for the admission cost.

Lemma 8: For u ≤ τ , we have the lower bound

v(u+ x)− v(u) > (λ− r)(u+ x− τ), 0 ≤ u < τ. (19)

Proof: When u + x < τ , the right-hand side of (19) is
negative and the inequality holds trivially as v(u) is increasing.
Noting that (8) holds for u+ x ≥ τ ,

v(u+ x)− v(u) > v(u+ x)− v(τ) = (λ− r)(u+ x− τ),

which completes the proof.
Note that Lemma 8 holds for r and v(u) corresponding to

an arbitrary non-increasing ξ(u) such that ξ(u) = 0 for u > τ ,
which are properties of a good admission policy.

Consequently, if (λ − r)(u + x − τ) ≥ 1, with r cor-
responding, e.g., to the basic admission policy ξ0(u), then
v(u + x) − v(u) > 1, and, according to policy iteration,
discarding the job reduces the expected long term costs (when
compared to ξ0(u)). That is, we can refine (1),

ξb(u) =

{
τ − u+ 1

λ−r , u ≤ τ,
0, otherwise.

(20)

The obtained rule corresponds to partial policy iteration. Note
that a lower r obtained with a better ξ(u) than ξ0(u), would
give an even better admission policy than ξb(u).

c) Static early reject: In particular, it makes sense to
discard a job with service time x at every state u ≥ 0 if
x ≥ τ + 1/(λ− r), yielding a static rejection rule,

ξst = τ +
1

λ− r
, (21)

which is then followed by the basic dynamic policy ξ0(u) that
also rejects a job if u ≥ τ .

Jobs with service time x > ξst are detrimental for the
system. Note that in the online setting both λ and r can be
estimated; for the latter one needs to feed the arriving jobs
also to a virtual duplicated system operating under the basic
policy (1) and record the accrued costs.

The jobs passing the static rule constitute a Poisson process
with rate λ′ = λP{X < ξst} with a truncated service-time
distribution X ′ ∼ (X | X < ξst). Hence, we can consider
a two-stage arrangement as illustrated in Figure 4. Such an
arrangement can be useful if the first static stage is located
near the source, and the second dynamic stage is near the
server, saving us from unnecessary job transfers in a scalable
fashion. (There is no need to have exact state information at
the first stage decision point(s).)

H. Optimal admission policy for M/G/1

In this section, we determine the optimal admission policy
for an arbitrary M/G/1 queue with respect to deadline viola-
tions. The results in Section III-C hold for an arbitrary admis-
sion rule ξ(u). The optimal admission rule is obviously also
some threshold policy ξopt(u), with value function vopt(u).

Corollary 9: For u ≤ τ , and for y = ξopt(u) such that

vopt(u+ y)− vopt(u) = 1, (22)

v′opt(u) = λF̄ (y)−r+λF (y)E[vopt(u+X)−vopt(u) |X<y].
(23)

The key observation is that y = ξopt(u), so v′opt(u) depends
solely on vopt(u

′) with u′ ≥ u. As we know vopt(u) for
u ≥ τ , it is again possible to solve the differential equation
backwards, eventually giving us the value function vopt(u), the
mean cost rate ropt, and the optimal admission policy ξopt(u).

As explained in Section III-D, for a fixed ξ(u) and unknown
r, we can either (i) solve (9) multiple times iteratively in
order to determine the correct r, or (ii) solve the Volterra
equation (4) first that gives the correct r, and then solve
(9) once. For determining the optimal admission policy and
the corresponding mean cost rate ropt, however, the only
possibility is to use method (i), since ξopt is unknown as long
as ropt is unknown, and hence the Volterra equation cannot
be used to determine ropt. In contrast, it is easier to use the
approximations discussed in Section III-F, and they yield near-
optimal solutions.

IV. SINGLE-SERVER EXPERIMENTS

In this section, we give several numerical examples with
single-server systems illustrating both the theoretical results
derived in the earlier section, and some interesting phenomena
caused by the deadline cost structure itself.

A. M/M/1

In Figure 5, we have depicted several value functions and
the corresponding admission policies resulting from one policy
iteration round for the M/M/1 queue with µ = 1, τ = 2, and
ρ = 1 and ρ = 2. By FPI(ξ) we mean one policy iteration
round from ξ, and Optimal is the optimal admission policy. The
value function corresponding to ξb(u) is computed backwards
from the admission rule. Interestingly, FPI(ξb) and Optimal are
practically equivalent.

With ρ = 1 (upper row), the two quadratic approximations
for the value function of ξ0(u) are exact and not shown.
However, with ρ = 2 the corresponding value function is not
a quadratic function, and therefore the approximations using
A1 and A2 indeed deviate from the exact value function. Also,
A2, defined by the derivative v′(τ−), yields a value function
that is similar to that of the optimal policy.

B. Steady-state distribution

The steady-state distribution of U for the M/M/1 queue with
ξ0(u) and τ = 2 is given by (6) and depicted in Figure 6 (left)
for ρ = 0.75, 1, 1.5. With ρ = 1, the steady-state distribution
is flat for 0 ≤ u ≤ τ , whereas with ρ 6= 1 it is either
exponentially decreasing (ρ < 1) or increasing (ρ > 1). For
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Fig. 6. Steady-state distribution of backlog in M/M/1 with the basic (left)
and the optimal (right) admission policies, ξ0(u) and ξopt(u).

the tail, when u ≥ τ , the steady-state distribution decreases
exponentially to zero in all cases.

The steady-state distribution for the optimal policy must be
computed numerically by first solving for the optimal policy,
and then solving the corresponding Volterra equations. The
resulting distribution is depicted in Figure 6 (right), where we
can see that the backlog rarely exceeds the deadline τ by more
than 1/λ.

C. M/G/1

Let us next study the effect of the service-time distribution
on the deadline violation rate in the M/G/1 queue with the
optimal admission policy. We consider three Weibull distri-
butions, Xi ∼ Weibull(αi, βi), i = 1, 2, 3, with parameters
(αi, βi) such that the mean service time is E[Xi] = 1, while
the variance is varied, σ2

i ∈ {0, 1, 5}. With σ2 = 0, we obtain
the M/D/1 queue, σ2 = 1 corresponds to the M/M/1 queue,
and σ2 = 5 then represents an M/G/1 queue with a more
variable service-time distribution. For Proposition 1, ξ0(u) is
optimal for the M/D/1 queue, and the mean cost rate can be
obtained by solving (9) (or by means of simulation). For the
other two queues, we need to solve (23) in order to determine
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Fig. 7. Deadline violation probability in different M/G/1 queues under the
optimal admission policy ξopt(u). (X ∼Weibull, τ = 2.)

the optimal admission policy and the mean cost rate.
Figure 7 depicts the deadline violation probability as a

function of the offered load ρ for these three service-time
distributions with the optimal admission policies. When ρ
is low, the fixed service time of M/D/1 yields the lowest
deadline violation rate. However, as the offered load increases,
it becomes obvious that a high variance can actually be
advantageous. The reason for this is that when service times
vary and jobs are plenty, it is possible to save many mice by
discarding a few elephants.

V. PARALLEL SERVERS

We now use the value functions for single M/G/1 queues
to develop efficient dispatching and admission rules for the
parallel server system, as in [22] and [20, Section 11.5].

A. Model and heuristic policies

We let s denote the state of the system, s = (u1, . . . , un),
where ui is the backlog in server i. The admission and routing
decision for a job with size x is denoted by α = α(s, x),

α(s, x) =

{
0, if the job is rejected,
i, if the job is routed to server i. (24)



The basic static dispatching policy is the Bernoulli split
(RND), which assigns a job to server i with probability pi,
i = 1, . . . , n, and where pi is chosen to balance the load.
Given the actual service times and backlogs are available, the
commonly used dynamic heuristic dispatching policy is least-
work-left (LWL). This policy assigns the new job to the queue
with the shortest backlog (in time). Hence, it is the optimal
myopic policy with respect to both waiting time and deadline
violations. In addition to dispatching, the control policy α
should exercise some admission control such as the basic
admission rule (1).

The multi-server setting is fundamentally more complicated
than a single-server system because there are both admission
and dispatching decisions to be made, and the state-space
is multi-dimensional. Not surprisingly, only a few optimality
results are available (even without the option to reject jobs),
and these typically assume identical servers, exponentially
distributed service times, and minimizing mean latency as the
objective, and they do not use arriving job size information.
In this paper, we give an optimality result in the multi-server
setting only for the trivial case when all jobs and all servers
are identical. Its proof is the same as that of Proposition 1.

Proposition 10: When all jobs are identical, xi = x, and all
servers are identical, ci = c, then LWL-ξ0, choosing the queue
with the shortest backlog, and rejecting jobs whose deadline
would be violated, is the optimal policy.

B. Admission control with policy iteration

With Poisson arrivals, whenever jobs are assigned in i.i.d.
fashion, then each server i also receives jobs according to
a Poisson process, and the whole system decomposes into
n independent M/G/1 queues. Given value functions for the
individual M/G/1 queues, the value function of the whole
system is

v(s) =
∑
i

vi(ui),

where ui denotes the backlog in queue i. Then di(ui) =
I(ui > τ), for i = 1, . . . , n, corresponds to the so-called
immediate cost for queue i (whether the deadline violation
occurs or not). We let i = 0 denote the action of rejecting a
job, and correspondingly, we define d0(u) = 1 and v0(u) = 0.
Consequently, we can carry out FPI, which gives an improved
job admission and dispatching rule

α(s, x) = arg min
i∈{0,...,n}

di(ui) + vi(ui + x/ci)− vi(ui), (25)

where the difference in the value function corresponds to the
expected increase in future costs.

Remark 11: Consider a system of identical servers with
(uniform) RND as the dispatching policy and a common
arbitrary ξ(u) as the admission rule so that the queue-specific
value functions are identical convex functions. Then the admis-
sion cost a(u, x) is an increasing function of u, and applying
FPI gives LWL-ξFPI. That is, jobs are routed according to
LWL, and then rejected if x > ξFPI(u). In particular, starting
from RND-ξopt yields LWL-ξopt.

There are two observations to be made at this point. First,
each policy iteration round improves both the admission and
dispatching rules. Second, starting from RND yields “only”
LWL, which, though reasonable, is not the optimal dispatching
policy in general, because it ignores arriving job sizes (see
later numerical examples).

In the ideal case, we would carry out the second policy
iteration round. Unfortunately, computing the value function
for a dynamic policy such as LWL is hard, and one has to
resort to more adhoc solutions such as the so-called Lookahead
policy improvement (LPI) [23], where the idea is to consider
also the assignment of the next arriving job, after which the
(static) basic policy takes over, i.e., the basic action is (i, j)
assigning the current job to queue i and the next (tentatively)
to queue j.

In the following two sections, we will evaluate the FPI and
LPI policies and compare their performance to that of RND
and LWL, augmented with different admission rules.

C. Two identical servers

Let us first consider a small system of n = 2 identical
exponential servers with µ = 1 and τ = 2. We consider two
heuristic reference dispatching policies: static RND and dy-
namic LWL. Both dispatching policies are complemented with
admission control at each server. In particular, we consider
two admission policies, ξ0(u), and the optimal one, ξopt(u)
(assuming RND), and denote the corresponding complete
control policies as RND-ξ0, RND-ξopt, LWL-ξ0 and LWL-ξopt,
respectively. We note that LWL is a dynamic dispatching policy
for which we do not know the optimal admission control, and
therefore we resort to the admission policy that is optimal for
RND.

Additionally, we have FPI and LPI based on the value func-
tion derived in Section III. We use the quadratic approximation
A2 for 0 ≤ u < τ and RND-ξopt as the starting point. We also
experimented with RND-ξ0. As the policy iteration step also
improves the admission rule, the results were only marginally
worse than with ξopt.

The numerical results are depicted in Figure 8 (left). We can
see that FPI-ξopt (i.e., LWL-ξopt, see Remark 11) is strong, and
LPI-ξopt is even better. Moreover, LWL-ξ0 is initially good (it
is optimal when ρ is very small), but as ρ approaches 1 the
basic admission rule is simply inadequate and the performance
falls behind the better policies, including even the elementary
RND-ξopt. In general we note that admission control matters
more when ρ is high, whereas routing is more important when
ρ is low.

D. Four heterogeneous servers

Figure 8 (right) shows the results for n = 4 servers with
service rates c = {2, 2, 1, 1} and τ = 2. We use the same
dispatching policies as in the previous examples. LWL-ξ0 is
strong when ρ is small (again, it is optimal when ρ→ 0), but
becomes weak as the load approaches ρ = 1 and (longer) jobs
need to be rejected. With heterogeneous servers, LWL-ξopt is
no longer the same as FPI-ξopt, and in fact the latter turns out
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to be a clearly better policy. Finally, LPI is the best control
policy especially when ρ is moderate or high, and large jobs
should be rejected proactively.

VI. CONCLUSIONS

Our deadline-based cost structure is motivated by the need
to provide fast responses in today’s large-scale cloud based
services; “respond promptly or not at all”. We derived value
functions and the optimal admissions policy for single-server
systems. These results were complemented with expressions
for the steady-state distribution of backlog and other important
performance metrics (e.g., deadline violation rate, carried
load), including exact closed-form results in specific (heavy-
traffic) limits. We applied our single-server results to systems
of parallel servers to develop efficient deadline-aware job
admission and dispatching policies. Numerical examples show
that our heuristics are superior to standard policies, especially
with heterogeneous servers under heavy load. Finally, we note
that our results are also useful for more complicated systems
of parallel servers, including power-of-two type approaches,
where admission and dispatching decisions are based on a
small (random) subset of servers. A more detailed investigation
of this research direction is left as future work.
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[23] E. Hyytiä, “Lookahead actions in dispatching to parallel queues,”
Performance Evaluation, vol. 70, no. 10, pp. 859–872, 2013.


