
Summer project: Server Pools with SRPT and PS Scheduling
Keywords: modelling, simulations, queueing theory
Supervisor: Prof. Esa Hyytiä (esa@hi.is)

Background: Consider a server with n jobs with (remaining) service times xi. Suppose x1 > x2 >
. . . > xn. SRPT and PS are scheduling disciplines defining the order at which the jobs are processed.

SRPT (shortest-remaining-processing-time) is the optimal scheduling discipline minimizing the mean re-
sponse time. It processes first the shortest job n, then job (n − 1), etc.. SRPT is also preemptive, i.e., if a
new shorter job arrives, the scheduler will switch to it immediately.

PS (processor sharing) processes all jobs concurrently. With n jobs presents, each job gets 1/n share of the
CPU time. Job n will finish first also in this case, but it will take n times longer time! Note that PS is an
adequate model multitasking operating systems where several processes are run concurrently.

Project plan: In this project, we study a system of parallel servers where arriving jobs are dispatched im-
mediately upon arrival servers, each processing jobs according to SRPT or PS. The key dimension explored
is the dispatching policy that decides on the job assignment.

1. The most elementary dispatching policy is random split (RND) choosing server i with probability
pi = 1/m, where m denotes the number of servers.

2. Round-robin (RR) rotates between the servers sequentially: 1, 2, . . . ,m, 1, 2, . . .
3. Myopic policy minimizes the total increase in the response time given no other jobs will arrive
4. SITA sends short jobs to server 1, and long to server 2 (and similarly with more than two servers).
5. Multi-layer policies first use policy α1 to split jobs to k secondary dispatchers, which use policy α2 to

route jobs to their final destination. In particular, we consider RR-SITA to spread jobs to all servers.

Tasks:

1. Implement a (fast) simulator for this task using Python, C or C++. The first version can be based
on RND, but other dispatching policies must be easy to implement. Statistics collected should suf-
ficiently general for deriving interesting performance metrics (starting from the mean response time
and its variance, to whole distribution).

2. Implement other policies described above and carry out numerical experiments with them
3. Study your findings and develop a better dispatching rules:

• A pure heuristic combining the ideas present in the given policies (e.g., a multi-layer design)
• Machine learning approach can also be considered

4. Optional: implement and study MDP-based policies (together with the supervisor)
5. Report the work: i) description of the simulator software and ii) results of simulation experiments

Expected Skills:

• Basic programming skills (Python, C and C++)
• Not afraid of statistics and probability theory
• Keen to understand how real computing systems can be modelled
• REI503M Performance Analysis of Computer Systems (recommended)

Jobs

Dispatchers
SRPT/PS Servers


